
Performance Tuning and
Optimizing ASP.NET

Applications

JEFFREY HASAN WITH KENNETH TU

FM.qxd 2/27/03 12:26 PM Page i

Performance Tuning and Optimizing ASP.NET Applications
Copyright ©2003 by Jeffrey Hasan with Kenneth Tu

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-072-4

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Michael Machowski
Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Karen Watterson, John Zukowski
Managing Editor: Grace Wong
Project Manager: Sofia Marchant
Copy Editor: Kim Wimpsett
Compositor: Impressions Book and Journal Services, Inc.
Indexer: Rebecca Plunkett
Cover Designer: Kurt Krames
Production Manager: Kari Brooks
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710.

Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the authors nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

FM.qxd 2/27/03 12:26 PM Page ii

Contents at a Glance

About the Authors .xi

About the Technical Reviewer .xi

Acknowledgments .xii

Introduction .xiii

Chapter 1 Introducing Performance Tuning

and Optimization .1

Chapter 2 Introducing ASP.NET Applications .21

Chapter 3 Writing Optimized Data Access Code 63

Chapter 4 Optimizing Application and Session

State Management .123

Chapter 5 Caching ASP.NET Applications .167

Chapter 6 Writing Optimized Web Services .207

Chapter 7 Stress Testing and Monitoring

ASP.NET Applications .253

Chapter 8 Debugging and Tracing ASP.NET Applications 297

Index .353

v

FM.qxd 2/27/03 12:26 PM Page v

CHAPTER 4

Optimizing Application
and Session State

Management

ASP.NET STATE MANAGEMENT is the ability of a Web application to persist infor-
mation, both at the application and session levels. There are two main types of
state in a Web application:

• Application state: This is information that applies to all clients of the Web
application. This information is shared by, and managed for, multiple
clients.

• Session state: This is information that applies to a specific client session.
You manage this information for individual clients.

Application and session state management are important for personalizing
Web applications and for persisting information that is widely used across a Web
application. ASP.NET expands the range of options available for managing appli-
cation and session state. In particular, it overcomes previous limitations of classic
ASP for managing state across Web farms.

You continue to manage application state using the Application object (tech-
nically, the HttpApplicationState class). In addition, ASP.NET provides the Cache
class, which offers more granular control over managing application data.

Session state management has been greatly expanded compared to classic
ASP; you are no longer confined to just using in-process Session objects. In clas-
sic ASP, developers liked Session objects for their ease of use but disliked them for
negatively impacting application scalability and performance. ASP.NET faces
similar challenges; however, the actual performance implications may surprise
you. As we discuss in this chapter, Session objects are not necessarily perfor-
mance killers. On the contrary, when used correctly, they can greatly improve the
performance of your application and minimally impact scalability. Most books
simply make a cursory reference to the “performance impact” of using Session
objects. We, on the other hand, take the discussion a step further by running per-
formance tests for each session mode and examining the numbers.

123

0724ch04 2/20/03 10:56 AM Page 123

Overview of Session Management

ASP.NET provides a wide range of session state management capabilities, which
allows for the dedicated storage and retrieval of user-specific information. Web
applications are built on Hypertext Transfer Protocol (HTTP), which is inherently
a stateless protocol. Web servers cannot typically recognize when a set of
requests originates from a single user. (The exception would be if the user has
a unique Internet Protocol that the Web application can reference from the HTTP
Headers collection). This limitation makes it challenging to tailor a Web appli-
cation experience to a single user. Personalized application sessions can usually
only occur if the Web server retains session-specific information between
requests. This process typically requires infrastructure support from the Web
server and participation from the client. The server and the client establish
a unique reference number for the session, or session ID, which is typically stored
in a cookie on the client machine. Cookies alone may also enable session man-
agement because they allow session-specific information to be retained in a text
file on the client machine. Cookies pass between the client and server during
requests, which enables the server to customize a response based on client-
specific information.

But cookies will only get you so far because they are limited both in size and
in the complexity of information they can store. Cookies are limited to 4KB in size
and are only capable of storing strings. You must store complex information, such
as an array or an ADO.NET DataSet, in more sophisticated ways on the server side.

124

Chapter 4

NOTE Some developers prefer to create custom session
management code rather than using the Session object. One
approach is to persist session information in hidden fields or
in the Uniform Resource Locator (URL) querystring. An
alternate approach is to store session information in a back-
end database and key the records using the session ID key
that is automatically generated when you enable session
state management. In these cases, neither the Web server nor
the client requires direct session management support.

There is actually a dual challenge to retaining and providing session-specific
information. On the one hand, there is the challenge of how to retain and
procure the information. And on the other hand, there is the challenge of how to
do it quickly. Users will not appreciate their richly tailored individual experience
if it requires them to wait for long periods of time between requests to the Web
application.

0724ch04 2/20/03 10:56 AM Page 124

Managing Session State in Classic ASP

Session state management was available in classic ASP, but it was much maligned
for four important reasons:

Performance: Classic ASP provides in-process session management only. All
session-specific information has to be stored in the Web server’s memory
heap, which becomes a drain on available resources as the number of ses-
sions increases. This is especially true if the session-specific information is
large or takes time to serialize. Session management in classic ASP is widely
considered to have unacceptable impacts on application scalability.

Reliability: In-process session information will not persist if the Web
server process ends unexpectedly or the connection between the client
and the server is dropped.

Web farms: The in-process nature of classic ASP session management
means that only one server at a time can retain session information. This
limitation makes classic ASP session management incompatible with Web
farms because this architecture routes a single user’s requests to the most
available server in the farm. Session information will get lost unless the
user is consistently routed to the same machine. In recent years this has
not been as much of an issue because modern load-balancing routers
have the ability to consistently route a user to the same machine for every
request. However, the user is still exposed to the risk of losing their session
information if their specific server crashes between requests and they are
forced to route to a different machine.

Cookie support: Classic ASP requires cookies for managing sessions,
which is a problem for the minority of clients that do not enable cookies.
Although this only affects a small number of clients, the greater problem is
the lack of any alternative to using cookies.

Classic ASP developers use their skills to overcome these limitations as best
they can. An especially popular approach is to retain all session information in
a dedicated database, using the session ID as a primary key for referencing the
information. This approach is not without its performance implications because
database calls are slower than pulling data from memory. But the performance
hit is worthwhile given that data is guaranteed to be available, especially from
clustered SQL Servers, which are highly available. Of course, database server
crashes will interrupt access to data. However, developers can greatly reduce the
likelihood of crashes through a combination of reliable database software (SQL
Server!) and fail-over measures, such as clustering database servers.

125

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 125

Managing ASP.NET Session State

ASP.NET addresses the limitations of classic ASP in the following ways:

Process independence: ASP.NET continues to support traditional in-
process session state storage, which stores session values in the same pro-
cess as the ASP.NET worker process. However, ASP.NET also provides two
modes for storing session state out-of-process. The StateServer mode
stores session state in a separate thread that is managed by a separate NT
service. The SQLServer mode stores session state in a dedicated SQL Server
database. Process independence improves the reliability and durability of
session state information by decoupling it from the ASP.NET application’s
worker process. If this process crashes, then session state information does
not need to be lost.

Cookieless support: ASP.NET does not require cookies for managing
sessions. Cookie-based session state management continues to be the
default, where the session ID is stored in a cookie on the client machine. In
cookieless mode, ASP.NET automatically appends the session ID to all
URLs. The drawback to this approach is that the Web application must
contain relative links, with no absolute links. Otherwise, the session ID will
fail to append to the URL, and the session association will be lost.

Web farms: ASP.NET provides the StateServer and SQLServer session state
modes, which decouples session state management from an application’s
ASP.NET worker process. Multiple computers in a Web farm can manage
session state using a centralized StateServer thread or a centralized SQL
Server database. These session state modes are easy to configure and
require no special coding.

In the “Understanding Session State Modes” section, we examine the various
ASP.NET session state modes in detail. In addition, we discuss the performance
implications of each mode. Clearly, there are performance implications when
you require a server to manage session information. This task is an additional
burden on the server and requires it to allocate valuable resources, both in terms
of memory and processor utilization. The key is to pick a session state mode that
provides the best session management for your application with the lowest over-
head. That is, you must pick a mode that offers the optimal balance between
performance and reliability for your particular state management requirements.

126

Chapter 4

0724ch04 2/20/03 10:56 AM Page 126

Configuring and Using ASP.NET Session State

Session state is enabled by default for a new ASP.NET project and is set to
InProc (in-process) mode (described next). You configure session state in the
Machine.config and Web.config files using the <sessionState> element:

<sessionState

mode=”Off|InProc|StateServer|SQLServer”

stateConnectionString=”tcpip=127.0.0.1:42424”

sqlConnectionString=”server= machineName\sqlServer;uid=sa;pwd=;”

cookieless=”true|false”

timeout=”20”

/>

In this example, the pipe symbol (|) indicates a mutually exclusive choice of
options, and the connection string and timeout properties have default exam-
ples. Note that the Web.config file is case sensitive, so make sure you type all
mode values using the correct case. “InProc” is a valid mode value, but “Inproc” is
not. There is no special user interface (UI) for the Web.config file; otherwise this
detail would be taken care of for you.

The minimum required <sessionState> attributes are mode, cookieless, and
timeout (set in minutes). The stateConnectionString attribute is only required
when the session mode is StateServer. Similarly, the sqlConnectionString attri-
bute is only required when the session mode is SQLServer.

You can further configure session state at the individual page level using the
EnableSessionState attribute of the @ Page directive:

<%@ Page EnableSessionState=”True|False|ReadOnly” %>

If the attribute value is “True,” then either a new session will be created or an
existing session will be used. If the value is “False,” then no new session will be
created and no session values may be accessed on the page. If the value is
“ReadOnly,” then session values may be retrieved, but not modified.

Understanding Session State Modes

ASP.NET provides four modes for managing session state on the server:

• Off: Session state is disabled.

• InProc: Session state is stored and managed in-process, on the same
thread as the ASP.NET application.

127

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 127

• StateServer: Session state is stored out-of-process and is managed by an
NT Service called ASP.NET State Service.

• SQLServer: Session state is stored and managed by a SQL Server database
called ASPState. A batch file that ships with .NET, called
InstallSqlState.sql, creates this database.

Let’s discuss each of the modes in turn, excluding the Off mode, which war-
rants no further explanation.

Using InProc Session State

The InProc mode is the default mode for session state and is equivalent to what
classic ASP provides. This mode is the easiest to configure and only requires you
to update the Web.config file:

<sessionState mode=”InProc” cookieless=”false” timeout=”20” />

The advantages of the InProc mode are as follows:

• It is easy to configure.

• It is the fastest mode available because session items are stored in the
same thread as the ASP.NET application.

The disadvantages of the InProc mode are as follows:

• Session items are available on a single server only; you cannot share them
across multiple Web servers.

• Session items are not durable. You will lose them if the server crashes or is
restarted.

• Session items use up server memory and may negatively impact the scala-
bility of the application.

The InProc mode is an excellent choice if the session items are modest in size
and you are not concerned about potentially losing session items and having to
re-create them. E-commerce applications, for example, cannot afford to lose
session data. However, other applications can use Session objects to reduce
redundant database calls that would return duplicate information. These appli-
cations can easily re-create session items if they are lost.

128

Chapter 4

0724ch04 2/20/03 10:56 AM Page 128

Using StateServer Session State

The StateServer mode provides out-of-process session storage and management.
This mode stores session items in a dedicated process managed by an NT service
called ASP.NET State Service. You configure the StateServer mode in a two-step
process. First, you update the Web.config file:

<sessionState mode=”StateServer” stateConnectionString=”tcpip=127.0.0.1:42424”

cookieless=”false” timeout=”20” />

Next, you have to start the ASP.NET State Service because its default startup
type is manual. Open the MMC snap-in from the Windows Start menu button by
selecting Start ➢ Programs ➢ Administrative Tools ➢ Services.

Highlight the ASP.NET State Service entry, as shown in Figure 4-1, and click
the Start button. Alternatively, you can right-click the entry and select Start from
the pop-up menu.

If you forget to start the service but you update the Web.config file, then your
application will throw the following error:

System.Web.HttpException: Unable to make the session state request to the

session state server. Make sure that the ASP.NET State service is started

and that the client and server ports are the same.

The advantages of the StateServer mode are as follows:

129

Optimizing Application and Session State Management

Figure 4-1. The ASP.NET State Service

0724ch04 2/20/03 10:56 AM Page 129

• Session storage is out-of-process, so it does not directly impact the scala-
bility of the ASP.NET application.

• You can share session items across multiple Web servers.

The disadvantages of the StateServer mode are as follows:

• There is a high performance cost of marshaling session items across pro-
cesses, even within the same server.

• There is a high performance cost of marshaling session items between
servers if you have multiple servers accessing the same state service.

• Session items are not durable. You will lose them if the dedicated process
crashes or is restarted.

• Session items must support binary serialization to work with the
StateServer mode. Popular objects such as the DataSet object do support
binary serialization. However, others such as the equally useful DataView
object do not.

The StateServer mode is often the worst choice you can make for managing
session state. The cost of marshaling data across process boundaries is high, even
if the size of the data is small. If you must access Session data from multiple
servers, then SQLServer mode is often a better choice.

In ASP.NET 1.1, by default, only the local machine can connect to its ASP.NET
State Service. You can grant non-local machines access to the State Service via
a registry setting. This is an improvement over ASP 1.0, which did not restrict
access to the StateServer mode from any machine.

Using SQLServer Session State

The SQLServer mode provides out-of-process session storage and management
using a SQL Server database. You configure the SQLServer mode in a two-step
process. First, you update the Web.config file:

<sessionState mode=”SQLServer”

sqlConnectionString=”server= machineName\sqlServer;uid=myid;pwd=123;”

cookieless=”false” timeout=”20” />

You have some flexibility in the format of the SQL connection string. You
could use the following alternate format:

130

Chapter 4

0724ch04 2/20/03 10:56 AM Page 130

<sessionState mode=”SQLServer”

sqlConnectionString=”data source= machineName\sqlServer;

user id=myid;password=123;” cookieless=”false” timeout=”20” />

Note that the connection string does not include a database name. In fact,
the application will generate a runtime error if you include a specific database
name in the connection string. For security purposes, you may prefer to use
a trusted connection in place of specifying SQL credentials in the database con-
nection string. (Chapter 3, “Writing Optimized Data Access Code,” describes SQL
Server trusted connections in detail.)

Next, you need to run the SQL batch script that creates the SQL Server
session state database:

1. Open SQL Query Analyzer.

2. Open the InstallSqlState.sql script in a new window. The script is
located at %windir%\Microsoft.NET\Framework\%version%, where
%version% is a folder that is named equal to the current installed version
of the .NET Framework.

3. Execute the SQL script in Query Analyzer.

The script creates a new database called ASPState, which contains a number
of stored procedures for writing to, and reading from, the tempdb database. When
a user assigns a session item, the information is inserted into a temporary table in
the tempdb database. The new record includes an expiration timestamp that is
equivalent to the <sessionState> element’s timeout attribute value, in Web.config.

The advantages of the SQLServer mode are as follows:

• Session storage is out-of-process, so it does not directly impact the scala-
bility of the ASP.NET application.

• You can share session items across multiple Web servers and potentially
persist them until the service is stopped or the session item is explicitly
removed.

• It is highly efficient storage and retrieval for simple data types and small
DataSets.

The disadvantages of the SQLServer mode are as follows:

131

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 131

• It offers less efficient storage and retrieval for large DataSets.

• It potentially impacts application scalability when session items are large
and/or the number of session reads and writes is high.

• It only works for objects that can be serialized (in other words, objects
based on classes that implement the ISerializable interface).

The SQLServer mode is typically your only choice for session state if you
need to guarantee that the session information will be durable. The exception
would be if your ASP.NET application stores small strings, and you are willing
to persist this information in cookies on the individual client machines. The
SQLServer mode is an excellent combination of performance and durability, and
it will typically have limited impact on the scalability of an ASP.NET application.
This is provided that the session items are modest in size and the number of
session reads and writes remains reasonable. The SQLServer mode may not be
a good choice if you are persisting large amounts of data, especially in combi-
nation with complex object types, such as the DataSet object. The process of
serializing information to and from the database is extremely fast for a smaller
number of users. But you are likely to notice a measurable delay if your appli-
cation makes a high number of concurrent requests to the database, especially
for larger amounts of information.

Analyzing Session State Performance

We have all heard about the supposed performance implications of using Session
objects, but rarely do we see actual performance numbers in print. There is prob-
ably a good reason for this—namely, that no published set of numbers really
applies to your application. But there is value in looking at the relative perfor-
mance numbers for a simple ASP.NET Web page that retrieves data from a SQL
Server database. ASP.NET introduces a new and unfamiliar set of session man-
agement options, and it is interesting to look at how each mode performs relative
to the others.

Visual Studio .NET Enterprise Edition provides a tool called Microsoft
Application Center Test (ACT), which is a stress test tool for Web applications.
The tool allows you to record a Web session and then execute it for multiple
simulated users. ACT provides summary statistics and performance counter
numbers for the test runs. These metrics enable you to analyze performance and
scalability issues with your application. Chapter 7, “Stress Testing and Monitoring
ASP.NET Applications,” discusses how ACT works in great detail. For now, show
simulations for an increasing number of concurrent browsers and measure three
important performance and scalability counters:

132

Chapter 4

0724ch04 2/20/03 10:56 AM Page 132

• Time to Last Byte (TTLB): This counter measures (in milliseconds) how
long it takes for the Web application to service a request. TTLB is a key
indicator of how scalable an application is.

• Requests/Sec: This counter measures how many pages the Web appli-
cation can serve per second. (This counter is a good measure of
scalability.)

• % Committed Bytes in Use: This counter measures the amount of memory
being utilized on the Web server. This measure includes all processes run-
ning on the machine, so you need to adjust the final numbers for the
amount of memory usage that is unrelated to the Web application.

Processor utilization is another important metric because it indicates
whether your hardware is a limiting factor to your application’s scalability. This
metric factors into Transaction Cost Analysis (TCA), which provides a quantita-
tive measure of the processing cost of your application for a specific user load.
Note that TCA is not a part of this chapter’s load testing because our purpose is to
study the relative performance of each session state mode. However, Chapter 7,
“Stress Testing and Monitoring ASP.NET Applications,” discusses it in detail.

ACT also provides a summary of the HTTP Errors count, which is important
because performance metrics are only relevant when a significant percentage of
the requests have been successfully processed. As the number of concurrent
browsers increases, the chance for errors increases as well. A successful request
will return an HTTP response code of 200. ACT will commonly return two addi-
tional response codes:

• Response code 403 indicates that the server understood the request but is
refusing to fulfill it.

• Response code 500 indicates that the server encountered errors in
attempting to fulfill the request.

Response code 403 is frequently returned for higher numbers of concurrent
browsers. We do not consider performance numbers meaningful unless greater
than 97.5 percent of the requests are fulfilled successfully. For this reason, in the
following performance test, we ignored all test runs with greater than 10 concur-
rent browsers.

Sample Web Page with Session State

The sample Web “application” is a single Web page called
ap_SalesQueryWithSession.aspx, which executes a stored procedure in the

133

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 133

Northwind database and binds the resulting DataSet to a DataGrid on the page.
Specifically, the page executes the [Employee Sales By Country] stored proce-
dure, which accepts two input parameters: @BeginningDate and @EndingDate.
Figure 4-2 shows the Web frontend screen for this stored procedure.

134

Chapter 4

Figure 4-2. Using session state

0724ch04 2/20/03 10:56 AM Page 134

The first time that the page executes, it retrieves a DataSet directly from
the database. This DataSet gets bound to the DataGrid and then assigned to
a Session object. In addition, the search parameters are persisted directly
to view state so that they are available for comparison purposes. On subsequent
requests, the code compares the current textbox values with the values in view
state. If they are the same, then the code attempts to retrieve the DataSet from
the Session object. If they are different, then the code executes a fresh database
request.

This logic is handled inside of the BindDataGrid() function, as shown in
Listing 4-1.

Listing 4-1. The BindDataGrid() Function

Private Sub BindDataGrid()

Dim objDB As Apress.Database

Dim arrParams() As String

Dim sqlDS As DataSet

Dim blnRefreshDS As Boolean = False

Dim strJSScript As String = False

‘ Retrieve the connection string from Web.config

Dim strConn As String

strConn = ConfigurationSettings.AppSettings(“ConnectionString”)

Try

‘ Did the search criteria change?

If viewstate(“BeginningDate”) <> Me.ap_txt_beginning_date.Text Then _

blnRefreshDS = True

If viewstate(“EndingDate”) <> Me.ap_txt_ending_date.Text Then _

blnRefreshDS = True

‘ Look for an existing DataSet object in a session variable

sqlDS = CType(Session(“sqlDataView”), DataSet)

If sqlDS Is Nothing Then blnRefreshDS = True

If blnRefreshDS Then

‘ Step 1: Instance a new Database object

objDB = New Apress.Database(strConn)

‘ Step 2: Execute [Employee Sales By Country]

arrParams = New String() { _

“@Beginning_Date”, Me.ap_txt_beginning_date.Text, _

“@Ending_Date”, Me.ap_txt_ending_date.Text}

sqlDS = objDB.RunQueryReturnDS(“[Employee Sales By Country]”, _

arrParams)

Session(“sqlDataView”) = sqlDS ‘ Assign DataSet to Session object

135

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 135

‘ Persist the search parameters in ViewState, for future comparison

viewstate(“BeginningDate”) = Me.ap_txt_beginning_date.Text

viewstate(“EndingDate”) = Me.ap_txt_ending_date.Text

End If

‘ Bind the DataView to the DataGrid

DataGrid1.DataSource = sqlDS

DataGrid1.DataBind()

Catch err As Exception

‘ Report the error in a JavaScript alert

strJSScript = “<SCRIPT LANGUAGE=’JavaScript’>alert(‘“ & _

err.Message”’);</SCRIPT>”

RegisterStartupScript(“JSScript1”, strJSScript)

Finally

objDB = Nothing

End Try

End Sub

Note that Listing 4-1 uses a wrapper function called RunQueryReturnDS(),
which is a member of a custom data access component that encapsulates
ADO.NET database calls. You can view the code listing for this component in the
sample project that accompanies this chapter.

Stress Testing with Session State

We stress tested the sample page in four groups of tests: one group for each of the
four session state modes. We performed the testing within each group as follows:

1. We configured the page for one of the session state modes: Off, InProc,
StateServer, or SQLServer.

2. ACT recorded a Web browser session with three steps:

a. Load ap_SalesQueryWithSession.aspx into the browser for InProc,
StateServer, and SQLServer modes. For Off mode, load
ap_SalesQueryWithDataSet.aspx.

b. Enter a Beginning Date of 01/01/1992 and an Ending Date of
01/01/2002.

136

Chapter 4

0724ch04 2/20/03 10:56 AM Page 136

c. Click the Submit Query button twice: first, to retrieve a DataSet from
the database and, second, to retrieve the DataSet from the Session
object.

3. The recorded script ran three times, one time each for one, five, and 10
concurrent browsers. The script ran for a 35-second interval with a five-
second warm-up period.

The database returned 809 records per query for the time period from
01/01/1992 to 01/01/2002. ACT generated from roughly 600 to 900 connections
per test during the 35-second testing interval, depending on the session mode.
This means that the tests created anywhere from 200 to 450 Session objects dur-
ing the testing interval.

We executed the tests in two groups of runs with different architectures:

Group A: We executed these tests against a dedicated Web server using
recorded scripts in ACT. The database resided on a separate server on the
network. The ACT scripts were executed from the database server against
the Web server to avoid generating simulated requests on the same server
that processes them. This design spreads the processing burden between
multiple servers so that IIS and SQL Server do not have to compete for
processor time on the same server. This design should prevent the test
results from being skewed by an overburdened processor.

Group B: We executed these tests on a single server that runs the Web
server, the SQL Server, and the test scripts. This architecture imposes
a high processor burden on the server, but it does not unusually skew the
memory usage numbers. We chose this architecture because authenti-
cation issues prevented the Group A test results from generating memory
usage numbers. For the client machine to bind to these remote counters,
the Web server must authenticate requests using a domain account with
administrative access (to the Web server). We chose not to set up these per-
missions levels for this round of testing.

The Group A tests represent better testing practices because the architecture
spreads the processing burden between multiple servers. We ran the Group B
tests because we could not otherwise generate memory usage numbers for differ-
ent session state modes.

Before proceeding, we should point out that, in reality, you would likely not
design a Web application to have tens to hundreds of session-stored data sets.
The ACT tests represent unusually stressful conditions that would not likely be
duplicated in the field because you would make a different design decision to
avoid this situation. But this is, after all, what stress testing is all about.

137

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 137

Analyzing the Stress Testing Results

By session mode, Table 4-1 shows the change for Group A in the all-important
Time To Last Byte (TTLB) parameter as the number of concurrent browsers
increases. The numbers are normalized per 100 requests. You will recall that
this parameter is a key indicator of application scalability.

138

Chapter 4

Table 4-1. Normalized TTLB by Session State Mode (in Milliseconds per 100 Requests)

CONCURRENT BROWSERS MODE = OFF MODE = INPROC MODE = STATESERVER MODE = SQLSERVER

1 7.81 4.54 8.27 8.47

5 28.28 20.25 27.25 29.29

10 89.38 46.08 77.29 85.11

The TTLB numbers are similar for Off, StateServer, and SQLServer modes.
However, the numbers are lower for InProc mode by up to a factor of two. This
number becomes important when the Web server is under heavy load. A lower
TTLB number translates into less latency—that is, more requests serviced per
second. The testing results indicate this, as shown in Table 4-2, which presents
Group A average request rates for each of the session state modes.

Table 4-2. Average Requests per Second by Session State Mode

CONCURRENT BROWSERS MODE = OFF MODE = INPROC MODE = STATESERVER MODE = SQLSERVER

1 18.86 24.17 18.31 18.11

5 21.66 25.74 21.54 21.34

10 17.23 23.8 18.11 17.6

These numbers may not look very different, but they can translate into a
dramatically different number of total serviced requests. For example, over the
course of the 35-second testing interval with 10 concurrent users, the Off mode
serviced 603 total requests, and the InProc mode serviced 833 total requests.

Based on these numbers, the total number of serviced requests, from highest
to lowest, is as follows: InProc, StateServer, SQLServer, Off.

This sequence should sound entirely logical: InProc mode is fastest because
it operates in memory and on the same worker process as the application.
StateServer mode is the next fastest because it also operates in memory, although
you take a responsiveness hit for the time it takes to marshal session data across
processes. SQLServer is the next fastest because it takes time to exchange session

0724ch04 2/20/03 10:56 AM Page 138

information with the database. Finally, the Off mode is the least responsive
because every response must be regenerated freshly.

One of the knocks against classic InProc session variables is that they are
scalability killers. They exhaust server resources rapidly as the number of concur-
rent users increases. This is a double hit when you consider that the Web server
could be using some of this memory for caching, which would help service
requests even faster by avoiding a complete re-creation of the response. In fact,
session variables continue to use server resources, even if the user is not actually
storing any session-specific information. Even a lightly used session variable
continues to consume server resources. The overall result is that the Web server
services fewer requests as the number of concurrent users increases.

The numbers in Table 4-2 appear to verify this trend, although with an inter-
esting twist. Each mode services the most requests for five concurrent users
but a fewer number for one user and for 10 concurrent users. Figure 4-3 shows
a graph of the Group A average requests per second by session state mode.

This “triangular trend” indicates that five concurrent users receive better
responsiveness than one concurrent user. This trend may reflect the influence of
SQL Server, which caches data pages for successive requests, and SQL con-
nection pooling, which makes a set of connections readily available for multiple
users. The number drops again for 10 concurrent users because it exceeds the
pool number and begins to be high enough to burden the server.

A better measure of scalability changes is to look at the change in TTLB as
the number of concurrent users increases. Figure 4-4 graphs the change in TTLB
for each session state mode as the number of concurrent users increases. The

139

Optimizing Application and Session State Management

16

18

20

22

24

26

28

1 10

Concurrent Browsers

Re
qu
es
ts
/S
ec Off

InProc
StateServer
SQLServer

5

Figure 4-3. Group A: Average requests/sec by session state mode

0724ch04 2/20/03 10:56 AM Page 139

numbers are normalized based on 100 requests to adjust for the fact that differ-
ent session modes service different numbers of requests. For example, in the
Group A tests, InProc mode serviced 846 total requests, and SQLServer mode
serviced 634 total requests.

The TTLB numbers shown in Figure 4-4 exhibit subtle differences, except for
InProc mode, which experienced the lowest TTLB numbers. This indicates that
the InProc mode can service a superior number of requests and remain more
responsive than other session modes. We attempted to test more than 10 concur-
rent browsers, but the number of request errors exceeded 20 percent, which
would not produce meaningful numbers for comparison.

Based on our limited data set, it is useful to look at relative growth rates in
TTLB, as shown in Figure 4-5. The TTLB is normalized for each session mode,
based on one concurrent user. For example, TTLB grows a factor of 10.05 for
SQLServer mode as the number of concurrent browsers increases from 1 to 10.

140

Chapter 4

1 10

Concurrent Browsers

No
rm
al
iz
ed
 T
TL
B
Gr
ow
th

Off
InProc
StateServer
SQLServer

5
0.00

2.00

4.00

6.00

8.00

10.00

12.00

Figure 4-4. Group A: Normalized TTLB by session state mode

0724ch04 2/20/03 10:56 AM Page 140

The differences in the TTLB growth rates are subtle, and it is perhaps
a stretch to infer patterns from them. However, based on these numbers, the
growth rate in TTLB for each session mode from highest to lowest is as follows:
Off, InProc, SQLServer, StateServer.

This trend indicates that the Off mode experiences the greatest growth in
TTLB as the number of concurrent users increases. The InProc mode and the
SQLServer mode experience lesser growth in TTLB, and the StateServer mode
experiences the lowest. The results simply indicate the trend in TTLB growth and
are not a replacement for actual stress testing and observation at higher user
loads. These limited results simply indicate that responsiveness goes down as the
number of concurrent browsers increases and that the Off mode experiences
the greatest decrease in responsiveness. As the stock market mantra goes, current
results are not an indication of future performance. In a similar sense, TTLB
growth changes at low user loads may not indicate their behavior at higher (and
more critical) user loads.

A further note of wisdom is that every system will experience bottlenecks at
some level, whether it is related to the processor speed, to available memory, to
network latency, or to the number of active threads being processed. Your goal
must be to stay ahead of the curve by designing your system to manage its
expected loads as efficiently as possible. Ultimately, performance tuning is
important because it allows your system to handle higher loads without
a redesign or without having to purchase bigger, more expensive hardware.

141

Optimizing Application and Session State Management

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 10

Concurrent Browsers

No
rm
al
iz
ed
 T
TL
B
(m
se
c/
10
0
re
qu
es
ts
)

Off
InProc
StateServer
SQLServer

2

Figure 4-5. Group A: Normalized TTLB growth by session state mode

0724ch04 2/20/03 10:56 AM Page 141

The other piece of the scalability puzzle is memory usage. We were unable to
generate memory usage numbers for Group A tests because ACT could not bind
to the remote Memory counter on the Web server (recall that ACT is running on
a separate server from the Web server). However, ACT has no problem binding to
the Memory counter on the same server. As a workaround, we ran an alternative
set of tests on a single server (Group B).

Figure 4-6 shows the Group B normalized TTLB values, based on 100
requests. The result pattern is different from the equivalent Group A test. The
SQLServer and StateServer modes experience much higher TTLB values, com-
pared to the InProc and Off modes, by up to two orders of magnitude. This
difference may reflect the greater processor burden on the single server. Simply
put, with more demands on the processor, the SQLServer and StateServer modes
suffered because they are more dependent on processor availability. We are not
attempting to explain the numbers away, but we are simply presenting the TTLB
test results so that you can keep them in mind when evaluating the memory
usage results.

Figure 4-7 shows actual memory usage by session mode where memory
usage is defined as the percentage of committed bytes in memory (as compared
to the total amount of memory available). This is an actual measure of memory
usage on the server, and it reflects the level of burden that each session mode
places on available server memory.

142

Chapter 4

0.00

500.00

1000.00

1500.00

2000.00

2500.00

1 10

Concurrent Browsers

No
rm

al
iz

ed
 T

TL
B

(m
se

c/
10

0
re

qu
es

ts
)

Off
InProc
StateServer
SQLServer

5

Figure 4-6. Group B: Normalized TTLB by session state mode

0724ch04 2/20/03 10:56 AM Page 142

The InProc mode clearly uses the highest amount of memory, followed by
the StateServer mode. The Off mode uses the least amount of memory, which is
to be expected. The SQLServer mode falls somewhere in between, although it
is interesting to note that its growth curve in memory usage is steeper than for
other modes. It is unfortunate that ACT could not generate meaningful numbers
with more than 10 concurrent browsers because it would be interesting to see
where the trends continued.

Memory usage numbers are an important indication of how a session mode
impacts server resources. But as with every counter, it only tells a part of the story.
For example, from Figure 4-7 alone, you might infer that the InProc mode is
a potential scalability killer because it exerts the highest burden on server memory.
But then, consider that it services a far greater number of requests than the other
modes. Increased memory usage may be a small price to pay for the far greater
number of requests that you can service, compared to other session modes. Add to
this the fact that the InProc mode experiences lower TTLB growth rates than other
session modes (based on both Group A and Group B test results). The InProc mode
suddenly appears to be an attractive option for managing session state.

In closing out this section, we want to emphasize its overall message, which
is that session state performance is not as clear-cut as many texts would lead you
to believe. For example, many texts brand the InProc mode as a guaranteed scal-
ability killer that should always be avoided on heavily trafficked Web sites. Our
tests have demonstrated that the picture is more complex because the InProc
mode offers far superior performance in exchange for higher memory usage.

Of course, there are other considerations that go into choosing a session
state mode. For example, if you must persist session state to disk or manage it in
a Web farm, then InProc mode will not meet your needs, no matter how good or

143

Optimizing Application and Session State Management

20.00

21.00

22.00

23.00

24.00

25.00

26.00

27.00

28.00

29.00

30.00

10

Concurrent Browsers

Me
mo
ry
 U
sa
ge
 (
%
Co
mm
it
te
d
By
te
s
in
 U
se
)

Off
InProc
StateServer
SQLServer

1 5

Figure 4-7. Group B: Actual memory usage by session state mode

0724ch04 2/20/03 10:56 AM Page 143

bad it may be. The previous section described the advantages and disadvantages
of each session state mode and discussed the optimal usage scenarios for
each mode.

The bottom line is that only you can decide which approach is best for your
Web site. There is no set of test numbers that can ever tell the definitive story, and
we ask you to keep this in mind and to possibly be inspired to extend our testing
with your own.

Programming with Session State

Session objects provide a straightforward application programming interface
(API) that is easy to code against. Table 4-3 summarizes useful Session object
members.

Table 4-3. Session Object Members

MEMBER DESCRIPTION

SessionID This read-only property gets the unique session ID used to

identify the session.

Timeout This read-write property gets or sets the timeout period (in

minutes) between requests before the session is terminated.

Keys This read-only property gets a collection of the keys of all values

stored in the session.

IsReadOnly This read-only property gets a value indicating whether a session

is read-only. You set this property at the individual page level

using <%@ Page EnableSessionState=”ReadOnly” %>.

Add() This method adds a new item to session state. Its syntax is

Add(name As String, value As Object).

Clear() This method clears all values and references from session state.

Abandon() This method cancels the current session. If the session gets

reinitialized, then the user gets a new session with a different

session ID. Session objects store information by associating an

object reference with a named index, or key, as follows:

Session(“[Name]”) = [Object]

Or, alternatively:

Session.Add(“[Name]”, [Object])

144

Chapter 4

0724ch04 2/20/03 10:56 AM Page 144

145

Optimizing Application and Session State Management

NOTE If you add a session variable that already exists, then
the existing session variable will simply be updated with the
new object or value. The previous object, or value, will be
overwritten without a warning.

Recall that in .NET, all data types inherit from the System.Object type. This
enables Session objects to store virtually any .NET data type with two important
exceptions:

If the session mode is StateServer, then you can only assign objects that
support binary serialization. For example, the DataSet object supports
serialization, and the DataView object does not. Serialization is the process
that allows an object to be represented in an XML document or as a binary
stream. The object may then be stored, or transported in this form, and
then faithfully re-created from the XML document or stream. However, if
the session mode is InProc, then the object need not support binary serial-
ization.

You should not store objects, such as the DataReader, that maintain open
connections to a database in Session objects. If you must assign a data
object to a session, then use a disconnected object such as a DataSet or
DataView.

You can iterate through a collection of session keys using the following:

Dim objKey As [Object]

For Each objKey in Session.Keys

Console.WriteLn(objKey.Name) ‘ Write out the name of the key

Next

Retrieving session values is as simple as assigning the stored object back to
a local variable:

sqlDV = Session(“sqlDataView”)

0724ch04 2/20/03 10:56 AM Page 145

This method implicitly casts the session reference to the appropriate data
type. You need to do this step because the Session object stores its references as
Object data types for maximum flexibility. An alternative to implicit casting is to
explicitly cast the data type when the reference is retrieved:

Dim sqlDV As DataView

sqlDV = CType(Session(“sqlDataView”), DataView)

Explicit casting is always preferable to implicit casting. Once you have
retrieved an object reference, you should always verify it was retrieved success-
fully before using it in code. The easiest way to do this is to execute the
assignment and then check to see if the object exists:

sqlDV = CType(Session(“sqlDataView”), DataView)

If sqlDV Is Nothing Then

‘ Recreate the object

End If

Finally, the Session object provides two event handlers for adding code when
a session is first created and when it is abandoned. The “Understanding the
Global.asax File” section discusses the Session_Start() and Session_End() event
handlers in more detail.

Session State Management in Web Farms

ASP.NET makes it easy to manage session state in Web farms. The StateServer and
SQLServer modes are equally good candidates for centralized session state man-
agement, so you need to decide which mode is right for your application. The
StateServer mode may offer better performance than the SQLServer mode.
However, the SQLServer mode guarantees that session state information will be
durable. The StateServer mode cannot provide the same guarantee because it
provides in-memory storage.

Keep in mind that you may not need a centralized State server in your Web
farm. If you are using an IP redirector, such as Cisco’s LocalDirector or F5 Network’s
BIGIP, then a client’s requests get routed to the same server for the duration of their
session. In this case, you can maintain session state on individual servers, using
either the InProc or StateServer modes. You do run a risk that IP redirection may
not always work. If a server crashes or becomes unavailable, then the client will be
routed to another server, which will have no record of their session information. For
this reason, you may want to consider using centralized session state management.

146

Chapter 4

0724ch04 2/20/03 10:56 AM Page 146

If you decide on using the StateServer mode, then you need to start the
ASP.NET State Service on one of the servers in the Web farm. You must designate
only one server in the Web farm for managing session state because you are pro-
ceeding on the assumption that there is no fixed redirection of requests in the
Web farm. The advantage of this approach is its flexibility in being able to man-
age state for all servers in the Web farm. However, the disadvantage of this
approach is that it creates a single potential point of failure. In exchange for
flexibility, you run a higher risk that the State server may fail and be completely
unavailable for all servers in the Web farm.

Next, you need to modify the Web.config file for each server in the Web farm
to point to the centralized State server. For example:

<sessionState mode=”StateServer” stateConnectionString=”tcpip=127.0.0.1:42424”

cookieless=”false” timeout=”20” />

Obviously, for this connection string to work, the State server must provide
a fixed IP and must not use Dynamic Host Control Protocol (DHCP). If you
decide on using the SQLServer mode, then you need to set up a central database
server and run the SQL script that creates the ASPState database. Next, you need
to modify the Web.config file for each server in the Web farm to point to the same
SQL Server database. For example:

<sessionState mode=”SQLServer”

sqlConnectionString=”server= machineName\sqlServer;uid=myId;pwd=myPwd;”

cookieless=”false” timeout=”20” />

If the reliability of your session is of utmost importance, then you can imple-
ment state management on a cluster of multiple database servers so that no
single point of failure exists.

This concludes the discussion of session state management. Next, turn your
attention to the topic of application state management.

Overview of Application Management

Application state management enables information to be shared between multi-
ple users of the same Web application. In classic ASP, you manage application
state using an HttpApplicationState handler, which is encapsulated by the ASP
Application object. This object is still available in ASP.NET, although it has addi-
tional members and gives you new ways to enumerate through a collection of
HttpApplicationState variables. The Application object is easy to work with, in
terms of configuration and coding, and this makes it a tempting option. Unfor-
tunately, the Application object is also problematic because it does a poor job of

147

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 147

synchronizing changes from multiple users. Only one user at a time (technically,
one thread at a time) should be allowed to modify an Application object variable.
This is a big issue in the .NET environment, which supports free-threaded
objects. To ensure single-thread updates, the Application object provides Lock()
and UnLock() methods that prevent other users from simultaneously updating
the object. The Lock() method actually locks the entire Application object, even
though the user may be updating just one of several available object variables.
This feature can cause concurrency problems if several users attempt to lock the
object at the same time. Ultimately, concurrency problems lead to scalability
problems as users are forced to wait to commit their changes. Worse yet, concur-
rency lockups could cause one or more users to deadlock and experience
instability with their sessions. As a result, Application state is only appropriate for
values that are read often but are updated infrequently.

ASP.NET provides a new and superior alternative to the Application object in
the form of a Cache engine, which provides better control over data storage and
retrieval. The Cache engine provides a more sophisticated API than the
Application object as well as better concurrency handling. The following sections
demonstrate the different options that ASP.NET provides for managing appli-
cation state.

Permanent vs. Transient Application State

You need to store two kinds of information at the application level:

• Permanent information: This applies globally across an application and
changes rarely. Examples include connection string information or config-
uration setting values referenced throughout the application.

• Transient information: This information is still global in scope, but it
changes with some frequency; examples include counters, such as a Web
site visitor counter. Users must all modify the same copy of this value to
keep a running count.

Although you could store both kinds of information in an Application object,
ASP.NET provides better alternatives.

Understanding Permanent Application State

You can store permanent information in the Web.config file and reference it
programmatically at runtime. At the simplest level, you can assign custom infor-
mation to a new key within the <appSettings> node:

148

Chapter 4

0724ch04 2/20/03 10:56 AM Page 148

<appSettings>

<add key=”ConnectionString” value=”server=;uid=sa;pwd=ap1;database=dev;” />

<add key=”SysAdminEmailAddress” value=”sysadmin@yourcompany.com” />

</appSettings>

You can then reference these keys from any code-behind file using the
ConfigurationSettings object, which is a member of the System.Configuration
namespace:

Dim strConn As String

strConn = ConfigurationSettings.AppSettings(“ConnectionString”)

The <appSettings> element is useful, but it is restricted to storing name-
value pairs. The Web.config file also allows you to define a custom configuration
section, which can have a more complex structure. For example, you could define
a section that tracks parent (myMenuGroup) and child (myMenuItem) menu
options:

<configSections>

<!-- Declares a section group called myMenuGroup -->

<sectionGroup name=”myMenuGroup”>

<!-- Declares a section name called myMenuItem -->

<section name=”myMenuItem”

type=”System.Configuration.DictionarySectionHandler, System”/>

</sectionGroup>

</configSections>

You could then implement the sections as follows:

<myMenuGroup>

<myMenuItem>

<add key=”Login” value=”login.aspx”/>

<add key=”Logout” value=”logout.aspx”/>

</myMenuItem>

</myMenuGroup>

You must define and implement custom configuration settings inside
Web.config. Once you do this, you can reference the settings from any code-
behind file in the project using the GetConfig() method of the
ConfigurationSettings object:

Dim dctMenuItems As IDictionary

Dim enmKeys As IDictionaryEnumerator

149

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 149

dctMenuItems = ConfigurationSettings.GetConfig(“myMenuGroup/myMenuItem”)

enmKeys = dctMenuItems.GetEnumerator()

While enmKeys.MoveNext

If enmKeys.Value.GetType.ToString = “System.String” Then

Response.Write(enmKeys.Key & “ = “ & enmKeys.Value & “
”)

End If

End While

The Web.config file is an excellent choice for persisting permanent appli-
cation information that must be referenced by, but never altered by, the
application. Clearly, the Web.config file is only capable of storing a limited range
of data types, so it is most suitable for storing configuration values. An added
advantage is that the application automatically picks up changes to this file with-
out requiring a restart. (ASP.NET automatically restarts when it detects a change
event.) This makes it easy to change application settings on the fly or to deploy
multiple versions of the same Web.config file to different environments, such as
staging and production.

150

Chapter 4

CAUTION The Web.config file is a text file and should there-
fore not be used for storing sensitive information. IIS will
not allow the Web.config file to be accessed by an outside
browser, but you should still be cautious with the type of
information you store in this file.

Some developers refuse to store SQL connection string information in the
Web.config file. We, on the other hand, store SQL login credentials as long as they
reference an account that has highly restricted access to the database.

Chapter 2, “Introducing ASP.NET Applications,” discusses the Web.config file
in great detail.

Understanding Transient Application State

ASP.NET provides two main classes for managing transient application state:

• HttpApplicationState

• Cache

Let’s discuss each of these in turn.

0724ch04 2/20/03 10:56 AM Page 150

Configuring and Using the HttpApplicationState Class

The HttpApplicationState class is instanced once for every ASP.NET application,
and it provides shared application state for all requests. This class is conveniently
exposed by the Page object’s Application property. From here on, we refer to the
HttpApplicationState class as the Application object, which represents a single
instance of the class. Think of the Application object as a collection container
that enables you to manage a collection of globally scoped variables. Like the
Session object, the Application object provides a straightforward API that is easy
to code against. Table 4-4 summarizes useful Application object members.

Table 4-4. HttpApplicationState Class Members

MEMBER DESCRIPTION

Add() This method adds a new item to application state. Its syntax is

Add(name As String, value As Object).

Lock() This method locks access to a specific application state variable.

Unlock() This method unlocks access to a specific application state

variable.

Set() This method sets the value of a specific application variable. Its

syntax is Set(name As String, value As Object).

Contents This read-only property gets a reference to the collection of

Application variables that were added through code using the

Application object’s API.

StaticObjects This read-only property gets a reference to the collection of

Application objects that were added in Global.asax using the

<object> tag.

RemoveAll() This method removes the entire collection of Application

variables.

Remove() This method removes a specific Application variable from the

collection. Its syntax is Remove(name As String).

RemoveAll() This method removes the entire collection of Application

variables.

The Application object is programmatically accessible via the Application
property of the Page object. Unlike the Session object, the Application object
does not require any settings in the Web.config file. You can add application-level
variables to the collection in two ways:

151

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 151

• Programmatically using the Application object’s API

• Using the <object> tag in Global.asax

For example, you can assign a String object programmatically:

Dim objStr As System.String

Page.Application.Add(“myStr”, objStr)

Alternatively, you can instance the String object at the application level in
Global.asax:

<%@ Application Codebehind=”Global.asax.vb” Inherits=”Apress1.Global” %>

<object runat=”server” id=”myStr” class=”System.String” scope=”application” />

Now that you have instanced the String object, you can set and retrieve its
value from any page within the application. For example, on Page1.aspx, you can
set the value:

‘ Set the string

Dim MyString1 As String = “My global string value.”

Page.Application.Set(“myStr”, MyString1)

Then on Page2.aspx, you can retrieve the value:

‘ Retrieve the string

Dim MyString2 As String = Page.Application.Item(“myStr”)

Response.Write(“MyString2 = “ & MyString2.ToString())

Observant readers will notice that we assigned MyString1 to the Application
object without locking the object first. Had we been more careful, we would have
used the available locking methods:

‘ Alternative set

Dim MyString2 As String = “My global string value2.”

Page.Application.Lock()

Page.Application.Set(“myStr”, MyString2)

Page.Application.UnLock()

The moral of the story is that the Application object allows you to set values
without requiring the safety check of the Lock() and UnLock() methods. Without
this check, you risk a collision with another user who is updating the Application

152

Chapter 4

0724ch04 2/20/03 10:56 AM Page 152

object at the same time. On the other hand, if you keep the Application locked for
too long, you risk a deadlock with another user.

In summary, the advantages of the Application object are that Application
objects are easy to code with and easy to configure.

The disadvantages of the Application object are as follows:

• You cannot share Application objects across multiple Web servers. Stored
values are only available to the application thread that instanced them.

• Application objects are not durable. They reside in memory and will be lost
if the dedicated process crashes or is restarted.

• Application objects greatly impact scalability because they are multi-
threaded and run a high risk of causing deadlocks and concurrency issues
when multiple users attempt updates at the same time.

• Application objects use memory resources, which can potentially have
a significant impact on the Web application’s performance and scalabil-
ity—particularly if the Application object stores significantly sized objects,
such as a populated DataSet.

• Application objects do not optimize resource usage, for example, by expir-
ing underused items. Application items remain in memory all the time,
whether they are heavily used or not.

Let’s now take a look at another alternative for managing transient appli-
cation state: the Cache class.

Configuring and Using the Cache Class

ASP.NET supports application data caching, which allows expensive resources
to be stored in memory for fast retrieval. Chapter 5, “Caching ASP.NET
Applications,” discusses caching in full detail, so this section serves as a quick
introduction to the feature. We present just enough detail to demonstrate how
caching is a good alternative to the Application object for managing transient
application state.

The Cache class provides optimized storage for persisting objects in memory.
Unlike the Application object, cached items remain available only for as long as
they are needed. You can assign cached items with expiration policies. The Cache
class provides much more control over cached items compared to the Appli-
cation object. These advantages include the following:

153

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 153

• Customized expiration: You can assign cache items individual expiration
policies that indicate when they should expire and be removed from the
cache. The Cache class supports three expiration modes, including
absolute, sliding, and dependency expiration:

• Absolute mode specifies an exact date and time for expiring the item.

• Sliding mode specifies a time interval for expiring the item, based on the
last time that the item was accessed.

• Dependency mode links an item’s expiration to a fixed resource, such as
a file. The item automatically expires and refreshes whenever the depen-
dency changes.

• Memory management: The Cache class automatically removes underused
items from the cache. In addition, items will be systematically evicted from
the cache when server resources become low.

• Concurrency management: The Cache class automatically manages con-
current updates to the same item, without requiring that the user place
a lock on the item.

Durability is the key difference between items stored in the cache vs. those
stored in an Application object. Cache items are not guaranteed to persist in
memory, although you can ensure they will by setting specific expiration policies.
As server resources become low, the Cache class will evict items based on their
relative priority. Heavily used items have high priority and will typically be
evicted last. You can set items with specific priorities to influence their eviction
order. But, ultimately, all items are subject to eviction if server resources become
tight enough. The Application object, on the other hand, will continue to hold its
references, regardless of the impact on server resources.

Like the Application object, the Cache class allows you to add items implic-
itly, using basic key-value pairs:

Dim sqlDS As DataSet

Page.Cache(“MyDS”) = sqlDS

The Cache class also provides explicit Add() and Insert() methods for
adding cache items with advanced settings, such as expiration policies and prior-
ities. The Insert() method is overloaded, so it provides the most flexibility for
adding items. For example, this is how you add an item using a 30-minute sliding
expiration:

154

Chapter 4

0724ch04 2/20/03 10:56 AM Page 154

Dim sqlDV As DataView

Page.Cache.Insert(“MyDV”, sqlDV, Nothing, Cache.NoAbsoluteExpiration, _

New TimeSpan(0, 0, 30))

You can retrieve items from the cache implicitly:

Dim sqlDV As DataView

sqlDV = Page.Cache(“MyDV”) ‘ Returns Nothing reference if item has been evicted

Or, explicitly using the Get() method:

Dim sqlDV As DataView

sqlDV = Page.Cache.Get(“MyDV”) ‘ Returns Nothing reference if item has been evicted

Finally, you can explicitly remove items from the cache using the Remove()
method:

Dim MyDS As DataSet

MyDS = Page.Cache.Remove(“MyDS”) ‘ Evaluates to True

Because cache items may expire, or be evicted, any code that uses them must
have the ability to re-create the object in the event that it cannot be pulled from
the cache. Consider the following code, which uses the GenerateDataSet()
method to create a populated DataSet object:

If Not IsNothing(Page.Cache.Item(“MyDS”)) Then

sqlDS = Page.Cache.Get(“MyDS”)

Else

sqlDS = GenerateDataSet() ‘ Regenerate the DataSet

Page.Cache.Insert(“MyDS”, sqlDS, Nothing, “12/31/2020”, _

Cache.NoSlidingExpiration)

End If

In this example, the code attempts to retrieve the DataSet from the cache. If
it cannot be found, then it must be regenerated and added to the cache again.
This example illustrates an important point: The Cache class is best suited for
storing objects that have page-level scope and that can be re-created if needed.
The Cache is global to an application, so it may technically be used for storing
“application-level” objects. But in practice, you would not want every page to
have to check for, and re-create, the Application object item. However, this is not
an issue for page-level objects.

155

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 155

The Cache class is a superior alternative to the Application object for all pur-
poses except when you need to store a truly global object reference—that is,
a reference that may be accessed from any page within an application and that
must be counted on to be there. The Application object is not as efficient as the
Cache class, but it does offer more convenience when you want to guarantee that
an item will always be available. The Application object does not persist items in
the event that the application crashes, but then, neither does the Cache class.

In summary, the advantages of the Cache class are as follows:

• The Cache class optimizes memory management by using expiration poli-
cies and by automatically removing underused items.

• The Cache provides automatic concurrency management.

• The Cache class is easy to code with and easy to configure.

The disadvantages of the Cache class are as follows:

• Cache items are not guaranteed to be persistent in the cache. This requires
contingency coding in code blocks that use cached object references.

• You cannot share cached objects across multiple Web servers. Object refer-
ences are only available to the application thread that instanced them.

This concludes our discussion on application state management. Next, we
discuss the Global.asax file and show how it helps you design optimal ASP.NET
applications.

Understanding the Global.asax File

The Global.asax file provides access to events handlers for the
HttpApplicationState class, for the HttpSessionState class, and for any HTTP
module registered for the application. The file is optional, and you are not
required to implement any of the event handlers. The Global.asax file essentially
provides a gateway to all HTTP requests received by the application. It provides
a centralized location where you can intercept client requests and use that infor-
mation to modify custom application state information. The Global.asax file
generally serves two purposes:

• Handling events for the Application and Session objects

• Centralizing application-wide tasks

156

Chapter 4

0724ch04 2/20/03 10:56 AM Page 156

This section focuses on the role of Global.asax both for state management
and for centralizing application-wide tasks.

Table 4-5 summarizes the important Application and Session object event
handlers that you can access in the Global.asax file.

Table 4-5. Global.asax Event Handlers

EVENT HANDLER DESCRIPTION

Application_Start() Called the first time an HttpApplication class is

instanced. The Global.asax file has access to

a pool of HttpApplication instances, but this

event handler is called only once.

Application_BeginRequest() Handles the HttpApplication BeginRequest()

event. This is called when a new HTTP request is

received by the application.

Application_EndRequest() Handles the HttpApplication EndRequest() event.

This is called when an HTTP request has finished

processing but before the response has been

delivered to the client.

Application_End() Called when all HttpApplication instances

unload. This occurs when the application is

restarted, which may occur manually or when the

Web.config file changes.

Application_Error() Called when an unhandled exception is raised

anywhere in the application. You can add generic

code for managing unhandled exceptions, such

as logging the issue and emailing a system

administrator.

Session_Start() Called when a new session is started.

Session_End() Called when a session is abandoned. This event

handler will not be called if the client simply

closes their browser. It will be called when the

current session is explicitly abandoned.

For example, consider a simple set of counters that track the following
information:

• AllRequests: This tracks the total number of requests received by the
application.

157

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 157

• AllUniqueSessions: This tracks the number of unique sessions created in
the application.

• SalesQueryCounter: This tracks the number of requests for a specific page
in the application, namely, ap_SalesQuery.aspx.

Listing 4-2 shows one example of how the Global.asax file manages these
counters.

Listing 4-2. Seeing Global.asax in Action

Public Class Global

Inherits System.Web.HttpApplication

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the application is started

Application(“AllRequests”) = 0

Application(“AllUniqueSessions”) = 0

Application(“SalesQueryCounter”) = 0

End Sub

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the session is started

Application(“AllUniqueSessions”) += 1

End Sub

Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires at the beginning of each request

Application(“AllRequests”) += 1

If InStr(Me.Request.Url.ToString, “ap_SalesQuery.aspx”) > 0 Then

Application(“SalesQueryCounter”) += 1

End If

End Sub

End Class

These counters are all initialized in the Application_Start() event, which
fires the first time the application is instanced. The AllUniqueSessions counter
gets incremented in the Session_Start event (assuming that session state is
enabled for the application). Finally, the SalesQueryCounter counter gets incre-
mented in the Application_BeginRequest event, which fires every time the
application receives a new request. The code uses the Request object’s Url prop-
erty to determine which page the user has requested.

158

Chapter 4

0724ch04 2/20/03 10:56 AM Page 158

Managing Unhandled Exceptions with the
Application_Error() Event Handler

The Application_Error() event handler is another useful method that is called
whenever an unhandled exception occurs anywhere within the application.
You can design an application for all foreseeable exceptions, but it is likely that
unhandled exceptions will occur, particularly when the application is moved
from a development to a production environment. Listing 4-3 shows how you
can have unhandled exceptions logged to the application event log, then emailed
to the system administrator.

Listing 4-3. Managing Unhandled Exceptions with the Application_Error()
Event Handler

Imports System.Diagnostics

Imports System.Web.Mail

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)

‘ Step 1: Write an error to the event log

Dim strMessage As String

strMessage = “Url “ & Me.Request.UserHostAddress & Me.Request.Path & _

“ Error: “ & Server.GetLastError.ToString()

Dim Log As New EventLog()

Log.Source = “ASP.NET 1.0.3705.0”

Log.WriteEntry(strMessage, EventLogEntryType.Error)

‘ Step 2: Send a mail message to the System Administrator

Dim objMail As Mail.MailMessage = New Mail.MailMessage()

With objMail

.BodyFormat = Mail.MailFormat.Html

.To = “sysadmin@yourcompany.com”

.From = “sysadmin@yourcompany.com”

.Subject = “Exception Report for “ & Me.Request.UserHostAddress

.Body = “<html><body><h2>” & Me.Request.UserHostAddress & _

Me.Request.Path & “</h2>” & Me.Server.GetLastError.ToString() & _

“</body></html>”

End With

‘ Step 4: Send the Mail message (SMTP must be configured on the Web server)

Dim objSmtpMail As Mail.SmtpMail

objSmtpMail.SmtpServer = “MySMTPServer”

159

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 159

objSmtpMail.Send(objMail)

objSmtpMail = Nothing

objMail = Nothing

End Sub

As an added convenience, you can set the <customErrors> element in the
Web.config file to automatically redirect remote users to a friendly custom error
page. This redirection will occur after the Application_Error() event handler has
been called. Local users (in other words, developers who are working on local-
host) will continue to see a standard error screen that displays full exception
details, including the call stack:

<customErrors mode=”RemoteOnly” defaultRedirect=”ap_CustomErrorPage.aspx”/>

In summary, the Global.asax file serves as a central location for efficiently
managing application and session state and as central location for managing
application-wide tasks. The Global.asax file plays a key role in developing opti-
mal ASP.NET applications.

Using a Custom Base Class for Global.asax

The Application object is not the only way to store application-wide values. In
fact, it may be inefficient to store certain kinds of information this way. For
example, consider the counter example from Listing 4-2. The three counters are
initialized and incremented within the Global.asax file only, and they are never
modified outside of this file. There is no need to use an Application object for
storing this information, particularly if you want to keep the counter values pri-
vate and inaccessible from the rest of the application.

An alternative approach to using the Application object is to create a custom
base class for the Global.asax file. This base class inherits from the
HttpApplication class, just like the default Global class that sits behind the
Global.asax file. The custom base class provides the same members as
the default Global.asax file, but even better, you can extend the class with addi-
tional members, such as custom properties for tracking counters.

Listing 4-4 illustrates one possible custom base class.

Listing 4-4. Creating a Custom Base Class for the Global.asax File

Imports System.Diagnostics

Public Class apCustomModule

Inherits System.Web.HttpApplication

160

Chapter 4

0724ch04 2/20/03 10:56 AM Page 160

Private m_Counter As Integer

Public Property MyCounter() As Integer

Get

MyCounter = m_Counter

End Get

Set(ByVal Value As Integer)

m_Counter = Value

End Set

End Property

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the application is started

MyCounter = 0

End Sub

Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires at the beginning of each request

MyCounter = MyCounter + 1

End Sub

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the application ends

Dim Log As New EventLog()

Log.Source = “ASP.NET 1.0.3705.0”

Log.WriteEntry(“Number of Application Requests: “ & MyCounter, _

EventLogEntryType.Information)

End Sub

End Class

You can find this code implemented in the sample application,
AspNetChap4A, which accompanies this chapter. Notice that the class inherits
from the HttpApplication class and that it implements selected event handlers.
The class provides a property called MyCounter, which is equivalent to the
AllRequests counter from Listing 4-2. This property value gets incremented in
the Application_BeginRequest() event handler—that is, once for every client
request.

The next and final step is to update the @ Application directive in the
Global.asax file to inherit from the custom base class instead of from the default
Global class:

161

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 161

<%@ Application Codebehind=”Global.asax.vb”

Inherits=”MyApp.apCustomModule” %>

The custom base class resides in memory continuously for as long as the
application remains loaded. As a result, the MyCounter property acts like a static
variable, such that all application users will share one instance. When the appli-
cation does unload, the current counter value gets written to the application
event log.

One caveat with this approach is that you run the risk of thread blocking
issues if ASP.NET fails to manage the user load correctly. ASP.NET does a good
job of managing its thread pool and is efficient at managing its pool of
HttpApplication instances. You should not encounter problems updating custom
properties if they encapsulate simple data types. To be on the safe side, make
sure you stress test your Web application and monitor the number of errors the
application encounters under heavy load.

In summary, the Global.asax file serves as a central location for efficiently
managing application and session state and as a centralized location for manag-
ing application-wide tasks. The Global.asax file plays a key role in developing
optimal ASP.NET applications.

Choosing the Right ASP.NET State Management Option

State management is a vastly more complicated topic in ASP.NET than it is in
classic ASP. The choices you need to make are not as clear-cut as before because
you now have different options for accomplishing the same task. ASP.NET does
allow you to manage state in the most optimal way for your Web application. The
burden is on you, the developer, to make the right choices on which approach
you need to take.

When considering using session state, ask the following questions:

Does the application require centralized session state management,
or can it be managed on individual Web servers? ASP.NET provides
StateServer and SQLServer modes for centralized session state. ASP.NET
provides InProc, StateServer, and SQLServer modes for server-specific
session state.

Does the application require cookie-based or cookieless session state?
Most Web clients support cookies, so cookie-based session state is a good
approach for the vast majority of Web clients. Cookieless session state
requires the application to contain relative links only. Also, the application
is more vulnerable to losing a session reference because the ID is stored in
plain text in the URL, which can be easily tampered with.

162

Chapter 4

0724ch04 2/20/03 10:56 AM Page 162

What kind of information needs to be stored? The InProc session state
mode stores any data type, although you should be careful not to store
objects that could present threading issues. The StateServer and SQLServer
session state modes can only store objects that support binary seriali-
zation. This includes most of the simple data types (string, integer,
Boolean) as well as some specialized objects, including the DataSet object.

Does the application really need a Session object for all information?
Session state management is typically more expensive than application
state management because the server provides every client with its own
copy of the same information. You should only store information in
session state that is truly specific to an individual client. Technically, the
ap_SalesQueryWithSession.aspx page presented earlier is not a good use of
session state and would be better suited for caching. This is because the
DataSet contents vary by request parameters, not by individual client.

When considering using application state, ask the following questions:

Does the application require permanent application state? Permanent
state values are guaranteed to be available as long as the ASP.NET appli-
cation remains loaded. You can store permanent state values in the
Web.config file. This file is suitable for storing configuration values, but it
cannot be used to store objects. Permanent state values may also be stored
in the HttpApplicationState class, but then they must be compiled with the
application, and there is nothing to prevent them from being modified at
runtime. Alternatively, you can set up a public shared variable in the
Global.asax file and initialize it with a reference value or object. This vari-
able is accessible throughout the application; however, it does not provide
concurrency management. You should not set shared variables more than
once, and they should be primarily read-only for the application to prevent
concurrency problems. Often these variables are set once (initialized) in
the Global.asax file and then are treated as read-only throughout the rest
of the application.

Does the application require transient application state? The
HttpApplicationState class (the Application object) stores a wide range of
objects and data types in memory, and it will persist them until a user
alters them or until the application unloads. The Cache class provides
more granular control over application data, but it does not guarantee that
items will remain persistent in memory. Application code that references
cached items must have a contingency for re-creating an item that cannot
be retrieved from the cache. The Application object avoids this inconven-
ience, but it provides none of the storage efficiencies of the Cache class.

163

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 163

How frequently will stored items be updated? You should store reference
values used throughout an application in the Web.config file because
ASP.NET will automatically reload the application when this file changes.
You must store reference objects used throughout an application in the
Application object. If one or more of these references changes, then you
must recompile the application. Alternatively, you can store object refer-
ences in the Cache class using dependency expiration. For example,
a DataSet may be added to the cache, and the cached reference will be
used throughout the application as long as its dependency resource
remains unchanged.

Does the client need direct access to the item? If the client does not
require direct access to an application item, then consider creating a cus-
tom base class for the Global.asax file and storing the item using a class
property. For example, you can store a request counter in a class property
and automatically increment in it the Global.asax
Application_BeginRequest() method.

Ultimately, your choice for managing state comes down to the type of item,
how it gets accessed, and whether the item must remain persistent or can be re-
created. If used correctly, state management is an important factor in developing
optimal ASP.NET applications.

Summary

ASP.NET provides new ways to manage session state and application state. In this
chapter we discussed session state management using classic ASP and con-
trasted it with the new capabilities offered by ASP.NET. We reviewed the three
modes of managing session state in ASP.NET, which are InProc, StateServer, and
SQLServer. Many texts refer to the performance degradation you can expect to
see in your application when you manage session state. However, you rarely see
performance numbers that back up these statements. To address this issue, we
conducted performance stress tests of a Web page using different session state
management modes. The results showed that the effect on performance is not
clear-cut and that you may actually recognize performance benefits. Next we dis-
cussed application state management in ASP.NET. There are effectively two kinds
of information that need to be stored at the application level: transient infor-
mation and permanent information. You can store transient information using
the HttpApplicationState class, and you can store permanent information in the
Web.config file. After that, we discussed the important role that Global.asax plays

164

Chapter 4

0724ch04 2/20/03 10:56 AM Page 164

in ASP.NET applications. This class provides numerous event handlers and allows
you to execute code at various points in the request process. We showed how to
extend the functionality of the Global.asax file by writing a custom base class.
Finally, we ended the chapter with design considerations for implementing
session and application state management.

165

Optimizing Application and Session State Management

0724ch04 2/20/03 10:56 AM Page 165

Symbols and Numbers
@ Application directive, 161–162
@ OutputCache directive, 169

fragment caching, 176–183
page-level output caching, 171–176

@ Page directive, 30–31
disabling view state, 39
Trace attribute, 42, 332

% Committed Bytes in Use counter, 133
| (pipe symbol), 127
* (wildcard character), 117
128-character cryptographic key, 45

A
Abandon() method, 144
absolute expiration, 188, 190
absoluteExpiration parameter, 188
AcceptChanges() method, 93–94
Accept-Language header, 175
AccessCodeValue property, 243
ACT client processor usage counter, 278
ACT tool, 17–18, 263–295

analyzing test results, 280–282
Application object model, 282–284
customizing tests, 268–273

test duration, 270–271
test load level, 269–270
user groups and users, 271–273

features, 17–18, 263–264
interfaces, 18, 265
Memory counter and, 142
Microsoft newsgroups for, 295
performance counters, 273–274, 278
reports, 18

saving, 278–280
setting the reporting level, 275
using the report interface, 277

running tests, 275–278
checking performance counters,

278
Test Status window, 275, 276

runtime issues, 293–295
NTLM authentication error, 293
Provider load failure error, 294

response code problems, 294–295
test script length limitation, 295

saving tests, 268
scripting in, 17, 289–292
session state performance and,

132–133
setting up tests, 265–268

defining a dynamic test, 267–268
recording browser sessions, 265–267

test architecture, 264
Test object model, 285–292

overview of objects in, 285–289
scripting dynamic tests with,

289–292
See also performance testing; stress

testing
Actor property, 223
ACTTrace.log file, 291
Add() method

Cache class, 154, 188, 191
HttpApplicationState class, 151
Session object, 144
StateBag class, 36

AddNew() method, 108
ADO.NET, 63–121

architecture, 65
benefits of using, 67–68
Command object, 66, 117
data access best practices, 116–121
data access design decisions, 110–115

decision flow diagram, 114–115
n-tier applications, 110–112
Web services, 112–114

DataSet class, 87–110
features, 89–91
updating data, 91–96
XML integration, 96–106

DataView class, 107–108
important objects, 66
.NET managed data providers, 68–87

Command class, 77–80
Connection class, 69–77
DataAdapter class, 85–87
DataReader class, 81–85

overview of, 64–66

353

Index

0724Indx.qxd 2/27/03 12:17 PM Page 353

ADO.NET (continued)
SqlException class, 108–110
summary of, 121
XML integration, 63, 64, 67–68, 88,

96–106
AllRequests counter, 157
AllUniqueSessions counter, 158
analysis, performance, 15, 280–282
ap_crypto.aspx page, 45
ap_ExpensiveProducts.aspx page, 217
API (application programming inter-

face), 4, 23, 144, 245
application builds. See build configu-

rations
Application Center Test (ACT) tool. See

ACT tool
application data caching, 168, 186–196

adding cache items, 190–193
Cache class members, 188–189
Cache object features, 186–187
callback notification, 194–196
expiration policies, 189–190
removing cache items, 194
retrieving cache items, 193–194

@ Application directive, 161–162
application latencies, 255, 256–257
Application object, 123, 147–148

Cache class vs., 153–156
class members, 151
configuring and using, 151–153

Application object model (ACT tool),
282–284

application programming interface
(API), 4, 23, 144, 245

Application() property, 32
application settings, 54, 55–56
application state, 123, 147–164

overview of, 147–148
permanent, 148–150
transient, 148, 150–156

Cache class, 153–156
HttpApplicationState class,

151–153
application tracing, 334–335
Application_BeginRequest() event han-

dler, 157
Application_End() event handler, 157
Application_EndRequest() event han-

dler, 157
Application_Error() event handler, 157,

159–160, 344, 347
Application_Start() event handler, 157
AppRequestQueueLimit attribute, 61
Apps Performance counters, 16
AppSettings element, 55, 148–149
Apress Web site, 29
APSoapHeader class, 242, 244

ap_WSAsynchCustomer1.aspx client
page, 217

ap_WSConsumer1.aspx client page, 217
ap_WSGetMostExpensiveProduct.aspx

client page, 243
architecture

ACT tool, 264
ADO.NET, 65
ASP.NET, 2–4, 24–48

“Argument not specified” error message,
311

ASP.NET applications, 21–62
architecture, 2–4, 24–48
benefits of, 23–24
caching, 167–205
classic ASP vs., 3–4
configuration system, 48–61
debugging, 297–298, 311–330
exception management, 341–351
helper technologies, 120–121
HTTP handlers, 26–29
n-tier, 110–112
overview of, 21–23
Page class, 30–34
performance testing, 17–18, 253–296
state management, 123–165
tracing, 297–298, 330–341
view state, 34–48
Web services, 112–114, 207–251

ASP.NET runtime engine, 24, 25–26, 49
ASP.NET State Service, 129
ASP.NET worker process, 25, 57–60
ASPState database, 131
Assert() method

Debug class, 322, 323, 325
Trace class, 337

assertions, 322, 323–325
asynchronous Web services

client-side consumers, 230–240
server-side consumers, 225–230

Attach to Process dialog box, 328
authentication, 17

mixed-mode, 76–77
Web services, 240–244

Authentication element, 53
Authorization element, 53
AutoEventWireUp attribute, 31
Autos window, 313, 315
availability

assessing, 8–10
defined, 8

B
bandwidth, 9
base64-encoded string, 43
baseline, 13–14

354

Index

0724Indx.qxd 2/27/03 12:17 PM Page 354

batch log, 294
BeginGetEmployeeOrders() method, 226
benchmarks, 7–8, 13
best practices

data access, 116–121
performance testing, 262–263
throwing exceptions, 343–344

BindDataGrid() function, 135
binding data, 84–85
Body property, 286, 288
BooleanSwitch class, 324, 339
boot.ini file, 261
Breakpoint Properties dialog box,

318–319
breakpoints, 312, 314, 318, 329
Breakpoints window, 313, 318–320
Browse Performance Counters dialog

box, 274
browsers

recording a browser session, 265–267
simulating browser compatibility,

289–291
BrowserTest.vbs script, 289
build configurations, 299–311

characteristics of, 300
conditional compilation, 310–311
custom builds, 301–302
debug builds, 299–302
environments for, 300
levels of, 299
project configurations, 299, 306–309
release builds, 299, 300, 302
resolving errors in, 311
settings for, 302–304
solution configurations, 299, 304–306

Build tab, 309
BytesReceived property, 288

C
Cache API, 48, 168, 186, 187–189

Cache class members, 188–189
Cache object features, 186–187

Cache Array Routing Protocol (CARP),
204

Cache class, 153–156, 187–189
explained, 187
members of, 188–189

Cache object, 186–187
Cache property, 168
CacheDependency object, 188
CacheDuration property, 196, 210, 249
CacheItemPriority enumeration value,

188
caching, 120, 167–205

application data, 168, 186–196
adding cache items, 190–193

Cache class members, 188–189
Cache object features, 186–187
callback notification, 194–196
expiration policies, 189–190
removing cache items, 194
retrieving cache items, 193–194

ISA Server, 203–204
output, 168, 169–186

enabling, 169–171
explained, 169
fragment, 176–183
HttpCachePolicy object,

183–186
page-level, 171–176

overview of, 168–169
summary of, 205
transient application state and,

153–156
view state vs., 48
Web farm, 201–203
Web services, 196–201

proxy browser interface for,
196–198

Web application client for,
198–200

Call Stack window, 313
callback function, 235
callbacks

notification, 194–196
validation, 187

callService() method, 235, 237
camel-case convention, 52
capacity, 257–258
Catch statement, 120
centralized data access functions,

118–119
classic ASP

ASP.NET vs., 3–4
session state management in, 125

Clear() method, 144
Click() event handler, 229–230
Client-Activated mode, 246
ClientConnectedCheck attribute, 59
ClientFaultCode, 223
clients

cached pages on, 170
Web application, 198–200

client-side consumers, 230–240
consuming the Web service, 232–234
exception handling for, 238–240
implementing the WebService behav-

ior, 234–238
overview of the WebService behavior,

231–232
using the WebService behavior, 232,

233, 234–238
client-side invocation, 250

355

Index

0724Indx.qxd 2/27/03 12:17 PM Page 355

client-side scripts, 22
debugging, 325–330
Web services and, 250

Close() method, 73, 283, 287
CloseConnection property, 78
code efficiency, 257
code modules, 22
Code property, 223, 239
code-behind files, 21, 30
coding conventions, 250
Command class, 77–80

CommandBehavior enumeration
members, 78–79

ExecuteXmlReader() method, 80
command mode, 321
Command object, 66, 117
Command window, 313, 320–321
CommandText property, 117
CommandTimeout property, 79, 112
CommandType property, 79, 117
Committed Bytes in Use counter, 133
Common Language Runtime (CLR), 58
Common properties, 307
compilation

conditional, 310–311
exceptions, 297
just-in-time, 23, 250

Compilation element, 53
compiled code, 4, 23, 250
complex data types, 249
complex stored procedures, 117–118
component calls, 4
Component Designer tool, 104–105
concurrency management, 154, 187
conditional compilation, 310–311
<configSections> tags, 51
<configuration> node, 51
configuration implementation section,

50
Configuration Manager, 303–304,

308–309
Configuration properties, 307
configuration section handler (CSH)

section, 50
configuration setting, 50
configuration system (ASP.NET), 48–61

benefits of, 49–50
custom elements, 54–57

application settings, 54, 55–56
custom configuration settings, 54,

56–57
Machine.config file, 50–52
optimal configuration, 57–61

ASP.NET worker process, 57–60
HTTP runtime engine, 60–61

session state configuration, 127
Web.config file, 52–53

ConfigurationSettings class, 54, 71
Connect Timeout/Connection Timeout

parameter, 71
connection bandwidth, 9
Connection class, 69–77

closing connections, 73
connection pooling, 73–75
ConnectionString property, 70–73
trusted connections, 75–77

Connection Lifetime parameter, 74, 75
Connection object

ACT Application object model, 286–287
ADO.NET, 66, 85

connection pooling, 73–75, 118
Connection Reset parameter, 74
ConnectionString property, 70–73

important parameters, 71–72
storing connection strings, 70

consuming Web services, 216–240
client-side consumers, 230–240
consumption types, 217
examples of, 216–217
server-side consumers with asyn-

chronous calls, 225–230
synchronous server-side consumers,

217–225
Contains() method, 337
Contents property, 151
Control class, 33
Control Tree trace output section, 333
Controller object, 283, 284
Controls property, 32
cookies, 48, 124, 125, 126, 162
Cookies Collection trace output section,

334
Cookies property, 288
counters, 5–6, 16–17, 262

checking, 278
setting up, 273–274
See also specific counters

CreateConnection() method, 285
CreateRequest() method, 285
cross-process calls, 249
cryptographic key, 45–46
custom base class, 160–162, 164
custom build configuration, 301–302
custom configuration elements, 54–57

application settings, 54, 55–56
custom configuration settings, 54,

56–57
System.Configuration namespace,

54–55
custom configuration settings, 54, 56–57
custom error pages, 349–351
Custom Errors element, 53, 160
custom log file, 346
customized expiration, 154, 187

356

Index

0724Indx.qxd 2/27/03 12:17 PM Page 356

D
data access

best practices, 116–121
centralized functions, 118–119
design decisions, 110–115

decision flow diagram, 114–115
n-tier applications, 110–112
Web services, 112–114

.NET Framework namespaces
involved in, 64–65

Data Access Application Block, 119
data binding, 84–85
Data Cache engine, 4
Data Manipulation Language (DML),

117
Data Source/Server parameter, 71
data types

complex, 249
SQL, 83–84, 118
Web service-supported, 215

DataAdapter class, 85–87
methods, 86
properties, 85, 86

DataAdapter object, 66, 89
database efficiency, 257
DataColumn objects, 89
DataGrid controls

data binding and, 85
DataSet updates and, 94–96
view state and, 41

DataReader class, 81–85
accessing data, 82–84
data binding, 84–85

DataReader object, 66, 81–82
DataRow objects, 89
DataSet class, 87–110

data access, 112
DiffGram format, 106
features, 89–91
overview, 87–89
typed DataSets, 104–106
updating data, 91–96
validation using XSD schemas,

101–104
XML integration with, 96–106

DataSet object, 64, 66, 90–106, 116, 249
DataTable object, 89
DataView class, 107–108
DataView object, 66, 67, 107, 116
Date object, 188
DCOM technology, 244, 294
dcomcnfg.exe utility, 294
Debug.Assert() method, 323, 325
debug builds, 299–302
Debug class, 298, 322–323
Debug.Listeners collection, 325, 337
debug mode, 312

debugger windows, 312–321
Autos window, 315
Breakpoints window, 318–320
Command window, 320–321
functionality overview of, 313–314
Locals window, 315–316
QuickWatch dialog box, 317–318
Watch window, 316–317

debugging, 297–298, 311–330
assertions for, 323–325
client-side script, 325–330
setting the debug mode, 312
summary of, 352
VS.NET tools for, 311–325

debugger windows, 312–321
programmatic tools, 321–325
Task List window, 311

Debugging tab, 308
DebugWindows2.aspx file, 314
decision flow diagram, 114–115
declarative code, 169, 171, 183
default error page, 350
Default property, 79
default Service Description file, 212–213
defaultRedirect parameter, 350, 351
DefaultTraceListener, 337
delegate function, 188
Delete() method, 108
DeleteCommand property, 86
dependencies parameter, 188
dependency expiration, 190, 191–193
Deployment tab, 309
Description property, 210
Detail property, 223
detecting exceptions, 342
DictionarySectionHandler class, 54
DiffGram format, 67, 106
Disassembly window, 313
distributed caching, 204
Distributed Component Object Model

(DCOM), 244, 294
<div> tag, 234
downtime, 10
DropDownList controls, 237
Duration attribute

fragment caching, 176
page-level output caching, 172

Duwamish sample site, 266, 282
Dynamic Host Configuration Protocol

(DHCP), 147
dynamic tests, 267–268

E
Edit and Continue options window, 320
embedded timestamps, 230
Enable attribute, 58

357

Index

0724Indx.qxd 2/27/03 12:17 PM Page 357

Enabled property, 335, 339
EnableSession property, 210
EnableViewState attribute, 31, 38
EnableViewStateMac attribute, 31, 44
encoding, 43
encryption, 44
EndGetEmployeeOrders() method, 226,

230
Enlist parameter, 72
error pages, 349–351
errorDetail object, 238–239
errors

build, 311
HTTP, 133
NTLM authentication, 293
provider load failure, 294
SQL, 108–110
See also exception handling

ErrorSample.aspx page, 347, 349
event logging, 298
Event Properties dialog box, 347, 348
Event Viewer, 29, 347
exception handling, 341–351

appropriate use of, 119–120
custom error pages, 349–351
detecting exceptions, 342
filtering exceptions, 343
logging exception information,

345–348
logical/semantic exceptions, 297
managing unhandled exceptions,

159–160, 344–345
notification process, 348–349
SoapException class, 222–225
SqlException class, 108–110
syntax/compilation exceptions,

297
throwing exceptions, 343–344
Web services, 222–225, 238–240
See also errors

ExecuteNonQuery() method, 77, 79
ExecuteReader() method, 77, 78, 79
ExecuteScalar() method, 77, 79
ExecuteXmlReader() method,

77, 80
ExecutionTimeout attribute, 61
expiration

absolute, 188, 190
cache policies, 189–190
customized, 154, 187
dependency, 190, 191–193
sliding, 170, 184, 188, 190, 191

explicit casting, 82, 146
extensible configuration, 49
Extensible Markup Language. See XML
Extensible Schema Definition. See XSD

F
Fail() method

Debug class, 322
Trace class, 337

federated security, 240
Fill() method, 86, 105, 106
filtering exceptions, 343
FindControl() method, 32
FOR XML clause, 80
forward caching, 203
fragment caching, 48, 176–183

@ OutputCache attributes for,
176–177

VaryByControl attribute for,
181–183

VaryByParam attribute for, 178–180

G
Generate Users dialog box, 272, 273
GenerateDataSet() method, 155, 200
Get() method, 155, 189
GetBoolean() method, 83
GetChanges() method, 93, 96
GetConfig() method, 55, 149
GetCurrentUser() method, 285
GetCustomerList() method, 216, 227
GetCustomerOrders() method, 217, 227
GetDateTimeStamp() method, 196, 197
GetEmployeeOrders() method, 226
GetEmployeeSales() method, 216, 218,

221–222, 224
GetEnumerator() method, 189
GetErrors() method, 93
GetMostExpensiveProducts() method,

242
GetNextUser() method, 285
GetSqlDouble() method, 83
GetSqlMoney() method, 83
GetString() method, 83
GetXml() method, 97
GetXmlSchema() method, 97, 100, 103
Global.asax file, 22, 156–162, 163

Application_Error event handler,
159–160, 346

custom base class for, 160–162, 164
event handlers accessible in, 157
purposes served by, 156

Globalization element, 53

H
HandleOrderDetails() method, 230
Handler factory classes, 26
Handler processing classes, 26
handlers, HTTP, 26–29

358

Index

0724Indx.qxd 2/27/03 12:17 PM Page 358

hardware issues
availability and, 9
latency and, 257
scalability and, 12

HasControls() method, 32
headers

Accept-Language, 175
SOAP, 241–244, 249

Headers Collection trace output section,
334

helper technologies, 120–121
hierarchical caching, 204
horizontal scalability, 261
HTML (Hypertext Markup Language),

21, 167
HTML Control (HTC) file, 231
HTTP (Hypertext Transfer Protocol), 22,

207
errors count, 133, 278
handlers, 26–29, 335
response codes, 133, 281
runtime engine, 60–61
security, 43–44

HttpApplicationState class, 151–153
class members, 151
configuring and using, 151–153

HttpCachePolicy object, 169, 183–186
class members, 184–185
example of using, 185

<httpRuntime> configuration element,
60–61

HTTPS (HTTP Secure), 44
HTTPVersion property, 286

I
IConfigurationSectionHandler class, 54
IDictionary interface, 36
IdleTimeout attribute, 58
IEnumerable interface, 36
IEXPLORER.EXE process, 327
IHttpHandler interface, 26
immediate mode, 321
implicit casting, 146
implied exceptions, 222
InferXmlSchema() method, 98
information

permanent, 148–150
transient, 148, 150–156

Initial Catalog/Database parameter, 71
Initialize() function, 235
Initialize lifecycle stage, 33
InnerException property, 223
InnerXML() method, 101
InProc mode, 127, 138, 139, 146, 163
Insert() method, 154, 189, 191

InsertCommand property, 86
instances, Web service, 235
instrumentation, 298
integrated development environment

(IDE), 265, 298
integrated security, 76
Integrated Security/Trusted_Connection

parameter, 71
Internet Explorer

client-side script debugging with,
325–330

simulating compatibility with, 289
WebService behavior used with, 232

Internet Information Server (IIS), 2, 24,
76, 169

Internet Protocol (IP) redirectors, 201,
203

Internet Security and Acceleration (ISA)
server, 170, 203–204

interpreted code, 4
IP redirectors, 201, 203
ISA Server, 170

caching with, 203–204
information resources, 204

ISerializable interface, 37
IsOpen() method, 287
IsPostBack() property, 32
IsReadOnly() property, 144
IsReusable() property, 26
Item property, 36
ItemRemovedCallback() function, 195

J
JavaScript, 237
just-in-time (JIT) compilation, 23, 250

K
keep-alive connections, 293
Kelvin, Lord, 254
key name parameter, 188
Keys property, 36, 144
key-value assignment, 191

L
latency, 254–257

application, 255, 256–257
network, 255–256
user load vs., 255, 281
utilization vs., 259–260
See also response time

Listeners collection
Debug class, 325, 337
Trace class, 337–338

359

Index

0724Indx.qxd 2/27/03 12:17 PM Page 359

ListMostExpensiveProducts() method,
216, 233–234

load, 9, 11
testing, 260–261, 269
See also user load

loading, 15
LoadPostData() method, 33
LoadViewState() method, 33
local area network (LAN), 9
localOnly attribute, 335
Locals window, 313, 315–316
Location attribute, 172
Lock() method, 148, 151, 152
logging exception information, 345–348
logical/semantic exceptions, 297

M
Machine Authentication Check (Mac),

31
Machine.config file, 48–49, 50–52

code example, 51
sections in, 50

machine key-based encryption, 44
<machineKey> element, 44
MakeIE60GETRequest() function,

289–290
managed code, 4
managed provider objects, 64
management

concurrency, 154, 187
exception, 341–351
memory, 154, 187
state, 123

Max Pool Size parameter, 74
MaxIOThreads attribute, 60
maxRequestLength attribute, 61
MaxWorkerThreads attribute, 60
measuring performance, 8–12

availability, 8–10
scalability, 10–12
view state, 41–43

memory
cache management and, 154, 187
performance counter for, 262
scalability and, 142–143

Memory window, 313
MemoryLimit attribute, 59
Message property, 223
MessageName property, 210
metrics. See performance metrics
Microsoft newsgroups, 295
Min Pool Size parameter, 74
MinFreeThreads attribute, 61
MinLocalRequestFreeThreads attribute,

61

mixed-mode authentication, 76–77
modes

.NET remoting, 246
session state, 127–132, 138–144

Modules window, 313
monitoring performance, 15–17

Performance Monitor for, 16–17
steps involved in, 15
unattended monitoring, 341–342, 351
See also performance testing

MustUnderstandFaultCode, 223
MyCounter property, 161, 162

N
Name property, 210, 288
Namespace property, 210
namespaces

.NET Framework, 64–65
See also specific namespaces

NameValueSectionHandler class, 54
.NET Framework

asynchronous method invocation,
229–230

data typing system, 83–84
helper technologies, 121
namespaces involved in data access,

64–65
remote object invocation, 244–248
scalability features, 11–12
Software Development Kit, 250, 298
thread management capabilities, 11
Web service supported data types,

215
.NET managed data providers, 68–87

Command class, 77–80
CommandBehavior enumeration

members, 78–79
ExecuteXmlReader() method, 80

Connection class, 69–77
closing connections, 73
connection pooling, 73–75
ConnectionString property, 70–73
trusted connections, 75–77

DataAdapter class, 85–87
methods, 86
properties, 86

DataReader class, 81–85
accessing data, 82–84
data binding, 84–85

.NET remoting, 244–248
ASP.NET Web services vs., 246–248
highlights of, 245–246
information resources, 248

network latencies, 9, 255–256
New() constructor, 77

360

Index

0724Indx.qxd 2/27/03 12:17 PM Page 360

New() method, 87
newsgroups, 295
NextResult() method, 117
NoAbsoluteExpiration field, 189
NoSlidingExpiration field, 189
notification

callback, 194–196
exception, 348–349

n-tier Web applications, 110–112
NTLM authentication error, 293
NUMPROC parameter, 261

O
ODBC .NET data provider, 69
Off mode, 127, 128, 138, 351
OLE DB.NET data provider, 68
On mode, 351
onProductListResult() callback function,

236, 237
onRemoveCallback parameter, 188
Open() method, 283
optimization, 1

ASP.NET configuration, 57–61
HTTP runtime engine, 60–61
worker process, 57–60

Web service design, 248–250
Oracle .NET data provider, 68
output caching, 168, 169–186

enabling, 169–171
explained, 169
fragment, 176–183
HttpCachePolicy object, 183–186
page-level, 171–176
Web service, 249

Output window, 313
@ OutputCache directive, 169

fragment caching, 176–183
page-level output caching, 171–176

OutputCacheModule, 170

P
Packet Size parameter, 72
Page.Cache property, 183
Page class, 30–34

@ Page directive, 30–31
lifecycle stages, 33–34
members, 31–32

@ Page directive, 30–31
disabling view state, 39
Trace attribute, 42, 332

Page object, 30, 168
Page_Disposed() event, 34
Page_Error event, 344
Page_Init event, 33

page-level output caching, 48, 171–176
@ OutputCache attributes, 172–173
VaryByHeader attribute, 174–175
VaryByParam attribute, 173–174

page-level tracing, 332–333
enabling with @ Page directive, 332
interpreting output of, 333–334

Page_Load() event, 33
pageOutput attribute, 335
Page_PreRender() event, 34
PageTest.vbs script, 291
Page_Unload() event, 34
partial page-level caching. See fragment

caching
Pascal-case convention, 52
Password property, 288
Password/Pwd parameter, 71
Path property, 286
percentiles, 282
performance, 1

benchmarks, 7–8
counters, 5–6, 16–17, 262
measuring, 8–12
metrics, 4–5, 254–260
monitoring, 15–17
profiling, 13–15
testing, 17–18, 253–296
view state considerations, 39–41

performance metrics, 4–5, 254–260
latency, 254–257
relationships between, 259–260
throughput, 257–258
utilization, 258–259

Performance Monitor (PerfMon), 5–7,
16–17

ACT tool integration, 17
graphical view, 7
selection screen, 6

performance testing, 17–18, 253–296
ACT tool for, 263–295
analyzing results of, 280–282
approaches to, 260–261
best practices for, 262–263
counters for, 262, 273–274, 278
customizing tests, 268–273
dynamic tests and, 267–268
metrics for, 4–5, 254–260
overview of, 253–254
reporting level for, 275
running performance tests, 275–278
saving tests and reports, 268,

278–280
setting up tests, 265–268
summary of, 296
See also ACT tool; stress testing

performance tuning, 254, 263, 282

361

Index

0724Indx.qxd 2/27/03 12:17 PM Page 361

permanent application state, 148–150,
163

pipe symbol (|), 127
Platform setting, 304
pooling, connection, 73–75, 118
Pooling parameter, 74
POST operations, 230–231, 257
priority parameter, 188
process independence, 126
Processes dialog box, 327
<processModel> configuration element,

58–60
Processor object, 17
processor utilization, 133, 262
ProcessRequest() method, 26
profiling performance, 13–15
programmatic code, 169, 171, 183
programmatic debug tools, 321–325
Programmer Database files, 300
programming

debug tools for, 321–325
session state, 144–146
using good sense in, 119

project build configurations, 299,
306–309

Project Contexts setting, 304
project dependencies, 306
Project object, 283
propagating exceptions, 343–344
Properties dialog box, 269, 270
property pages

project configuration, 306–308
solution configuration, 304–306

protected configuration settings, 50
“Provider load failure” error message,

294
proxy browser interface, 196–198
proxy classes, 211–215
proxy servers, 170

Q
QueryProducts() method, 98–99
QuickWatch dialog box, 313, 317–318

R
RaisePostBackEvent() method, 34
Raw property, 239
Read() method, 82
ReadXml() method, 97
ReadXmlSchema() method, 97
Registers window, 313
relational database, 346
release builds, 299, 300, 302
remote object invocation, 244–248

ASP.NET Web services, 245, 246–248
.NET remoting technology, 244–248

remote scripting, 231
RemoteOnly mode, 351
Remove() method

Cache class, 155, 189
HttpApplicationState class, 151
StateBag class, 36

RemoveAll() method, 151
Render() method, 34
reports, 18

saving, 278–280
setting the reporting level, 275
using the report interface, 277

request bytes out total, 5
Request Details trace output section,

334
Request object, 286
Request() property, 32
RequestLimit attribute, 59, 335
RequestQueueLimit attribute, 59
Requests/Sec counter, 133
resource utilization, 258–259
response codes, 133

runtime problems, 294–295
test results, 281

Response object, 288–289
Response() property, 32
response time, 5, 254

baseline performance, 14
measuring, 254–257
See also latency

Response.Write() method, 194
ResponseDeadlockInterval attribute, 60
responseRestartDeadlockInterval attri-

bute, 60
RestartQueueLimit attribute, 59
ResultCode property, 288
resultsets, 117–118
return exceptions, 222
reverse caching, 204
RNGCryptoServiceProvider class, 45
Running Documents window, 313
RunQueryReturnDS() wrapper function,

136
runtime engine, 24, 60–61
runtime issues, 293–295

NTLM authentication error, 293
Provider load failure error, 294
response code problems, 294–295
test script length limitation, 295

S
SalesQueryCounter, 158
SaveViewState() method, 34

362

Index

0724Indx.qxd 2/27/03 12:17 PM Page 362

scalability
assessing, 10–12
defined, 8, 10–11
dimensions, 12
horizontal, 261
memory usage and, 142–143
session state and, 138–144
testing, 261
vertical, 261

scaling up/out, 12
scavenging, 168, 187
ScheduleTaskRunScript1.vbs file, 276,

284
SchemaOnly property, 78
scripts

ACT tool, 17, 289–292, 295
client-side, 22, 250, 325–330
remote, 231

section handlers, 51–52
Secure Sockets Layer (SSL) protocol, 17
SecureNorthwind.asmx Web service,

241–242
security

federated, 240
integrated, 76
view state, 43–44
Web services, 240–244

Select() method, 315
SelectCommand property, 86
Send() method, 287
SendRequest() method, 285, 290
SequentialAccess property, 78
serialization, 37, 145, 247
server farms

implementing view state in, 44–46
See also Web farms

Server Variables trace output section,
334

ServerFaultCode, 223
servers

ISA, 170, 203–204
proxy, 170
See also SQL Server

server-side consumers, 217–230
asynchronous Web method calls,

225–230
consuming the Web service, 220–222,

226–229
exception handling for, 222–225
synchronous Web method calls,

217–225
Service Description file, 212–213
session ID, 124
Session objects, 123, 144, 163
Session() property, 32
session state, 123, 124–147

ASP.NET management of, 126
classic ASP management of, 125
configuring and using, 127
managing in Web farms, 125, 126,

146–147
modes, 127–132, 138–144

InProc mode, 127
Off mode, 127, 128
SQLServer mode, 128–130
StateServer mode, 127–128

overview of, 124
performance analysis, 132–133
programming with, 144–146
sample Web page with, 133–136
scalability and, 138–144
stress testing with, 136–144

analyzing results of, 138–144
steps in process of, 136–137

view state vs., 46–48
Session variables, 46–48
Session_End() event handler, 157
SessionID property, 144
Session_Start() event handler, 157
SessionState element, 53, 127
Set() method, 151
SetCacheability() method, 183, 184
SetExpires() method, 183, 184
SetLastModified method, 184
SetNoServerCaching method, 185
SetSlidingExpiration method, 184
SetValidUntilExpires method, 184
Shared attribute, 177, 178
shared caching, 177
ShutdownTimeout attribute, 59
Simple Object Access Protocol. See SOAP
simulation, 17
SingleCall mode, 246
SingleResult property, 79
SingleRow property, 79
Singleton mode, 246
sliding expiration, 170, 184, 188, 190, 191
slidingExpiration parameter, 188
SOAP (Simple Object Access Protocol)

exception handling, 222–225,
238–240

headers, 241–244, 249
security extensions, 240–244
Web service communications, 22,

112, 196, 207, 208
SoapException class

exception handling using, 222–224
properties used in constructing, 223
raising a SOAP exception server fault

code, 224–225
SoapHeader base class, 241
SoapHeaderAttribute(), 241

363

Index

0724Indx.qxd 2/27/03 12:17 PM Page 363

Software Development Kit (SDK), 250,
298

software issues, 9
solution build configurations, 299,

304–306
SQL data types, 118
SQL Server

caching mechanism in, 202
data typing system, 83–84
SQL data types used with, 118
trusted connections, 75–77
XML functionality, 80

SQL Server .NET data provider, 68
SqlException class, 108–110
SQLServer mode, 128–130, 138, 146, 163
SSL protocol, 17
StartTest() method, 284
startup projects, 306
state management, 4, 123–165

application state, 123, 147–162
considerations for choosing, 162–164
Global.asax file, 156–162
session state, 123, 124–147
summary of, 164–165

StateBag class, 36
StateServer mode, 127–128, 138,

146–147, 163
StaticObjects property, 151
steady-state, 255
sticky sessions, 201
StopTest() method, 284
stored procedures, 117–118
stress testing, 15, 17, 260–261

ACT tool for, 132, 263–295
analyzing results of, 138–144,

280–282
customizing tests, 268–273
dynamic tests and, 267–268
performance counters for, 273–274,

278
reporting level for, 275
running performance tests, 275–278
saving tests and reports, 268, 278–280
session state, 136–144
setting up tests, 265–268
See also performance testing

String object, 152
synchronous Web services, 217–225
syntax/compilation exceptions, 297
System.Configuration namespace, 54–55
System.Data.Common namespace, 64
System.Data namespace, 2, 64
System.Data.OleDb namespace, 64
System.Data.SqlClient namespace, 64
System.Data.SqlTypes namespace, 64,

83, 118

System.Diagnostics namespace, 324, 346
System.Security.Cryptography name-

space, 45
System.Web.Caching namespace, 187
System.Web namespace, 2, 183
System.Web.Services namespace,

209–211
System.Web.Services.Protocols name-

space, 241
System.Web.UI namespace, 33
System.Xml namespace, 64
System.Xml.Schema namespace, 65
System.Xml.Xsl namespace, 65

T
Task List window, 311
TCP/IP (Transmission Control

Protocol/Internet Protocol),
207

tempdb database, 131
TemplateControl class, 33
Test object

ACT Application object model, 283,
284

ACT Test object model, 285
Test object model (ACT tool), 285–292

Connection object, 286–287
Request object, 286
Response object, 288–289
scripting dynamic tests with, 289–292

configuring tests for multiple
pages, 291–292

simulating browser compatibility,
289–291

Test object, 285
User object, 287–288

test scripts, 289–292
configuring for multiple pages,

291–292
length limitation for, 295
simulating browser compatibility,

289–291
Test Status window, 275, 276
Test.Trace() method, 291
testing. See performance testing; stress

testing
TestIsRunning property, 284
This (Me) window, 314
thread blocking, 162
Threads window, 314
thread-safe code, 9
throughput, 5, 8, 257

baseline performance, 14
measuring, 257–258
user load vs., 280

364

Index

0724Indx.qxd 2/27/03 12:17 PM Page 364

throwing exceptions, 119–120, 343–344
Time to First Byte (TTFB) counter, 255
Time to Last Byte (TTLB) counter, 133,

138, 139–142, 255
Timeout attribute, 58
Timeout property, 144, 248
TimeSpan object, 188
timestamps, embedded, 230
Trace attribute, 42, 332
Trace.axd handler, 335–336
Trace class, 298, 336–341

enabling, 336–337
listeners, 337–338
methods, 337
trace switching, 339–341

Trace element, 53
Trace Information trace output section,

334
Trace.Listeners collection, 337–338
Trace() method, 285
TraceContext class, 298, 331–336

application tracing, 334–335
enabling, 332
interpreting trace output, 333–334
methods and properties, 331–332
page-level tracing, 332–334
Trace.axd handler, 335–336

TraceLevelSwitch, 340–341
traceMode attribute, 335
TraceSwitch class, 339–340
tracing, 297–298, 330–341

application, 334–335
attributes, 335
enabling, 42–43
page-level, 332–334

enabling, 332–333
interpreting output, 333–334

summary of, 352
tools for, 330–341

Trace class, 336–341
TraceContext class, 331–336

Transaction Cost Analysis (TCA), 133,
261

TransactionOption property, 210
Transact-SQL statements, 117
transient application state, 148, 150–156,

163
Cache class, 153–156
HttpApplicationState class,

151–153
Triple DES encryption algorithm, 44
trusted connections, 75–77
TTLB property, 288
tuning performance, 254, 263, 282
typed accessor methods, 82–84
typed DataSets, 66, 104–106

U
unattended monitoring, 341–342, 351
unhandled exceptions, 159–160,

344–345
Uniform Resource Identifiers (URIs), 27,

199
Uniform Resource Locators (URLs), 124,

212
Universal Discovery, Description, and

Integration (UDDI), 209
Unlock() method, 148, 151, 152
Update() method, 86, 87, 96
UpdateCommand property, 86
UpdateDSWithDataGrid.aspx sample

projects, 94
updating data, 91–96
uptime, 9–10
user controls, 22
user groups, 271–273
User ID parameter, 71
user interface (UI), 265
user load, 9, 11

latency vs., 255, 281
testing, 260–261, 269
throughput vs., 258, 280
utilization vs., 259

User object, 287–288
UserHostAddress property, 28
users and user groups, 271–273
useService() method, 235
utilization, 258–259

latency vs., 259–260
scaling options, 259

V
validation

callbacks, 187
DataSet, 101–104

validation key, 44–45
VaryByControl attribute, 177,

181–183
VaryByCustom attribute

fragment caching, 177
page-level output caching, 173

VaryByHeader attribute, 173, 174–175
VaryByHeaders method, 184
VaryByParam attribute

fragment caching, 176, 178–180
page-level output caching, 172,

173–174
VaryByParams method, 185
VBScript, 17, 265, 284
Verb property, 286
VersionMismatchFaultCode, 223
vertical scalability, 261

365

Index

0724Indx.qxd 2/27/03 12:17 PM Page 365

view state, 34–48
alternatives to, 48
disabling, 38–39
how it works, 35–37
implementing in server farms, 44–46
measuring performance cost, 41–43
performance considerations, 39–41
persisting across multiple pages,

37–38
security considerations, 43–44
session state vs., 46–48

virtual private network (VPN), 9
Visual Studio .NET (VS.NET), 23

ACT tool, 132, 263
client-side script debugging, 325–330
code editor, 106
Component Designer tool, 104–105
debugging tools, 311–325
shell integration, 265
trace log, 42
Web service features, 207, 209

W
Warn() method, 332, 333
Watch window, 314, 316–317
Web application client, 198–200
Web Application Stress (WAS) tool, 263
Web applications

data access design for, 110–114
n-tier applications, 110–112
performance counters for, 262

Web browsers
recording a browser session, 265–267
simulating browser compatibility,

289–291
Web.config file, 22, 48–49, 52–53

configuration elements, 53
enabling application tracing in,

334–335
permanent information in, 148–150
sensitive information and, 150
session state modes and, 128, 129,

130
storing connection strings in, 70

Web farms
caching in, 201–203
session state management in, 125,

126, 146–147
See also server farms

Web forms, 21
Web reference, 220–222
Web server processor usage counter, 278
Web service method name, 235
Web service method parameters, 236
Web services, 22, 207–251

building using ASP.NET, 209–216
generating a proxy class with

WSDL, 211–215
System.Web.Services namespace

members, 210–211
caching, 196–201

proxy browser interface for,
196–198

Web application client for,
198–200

consumers of, 216–240
client-side, 230–240
examples of, 216–217
server-side, asynchronous,

225–230
server-side, synchronous, 217–225

data access design, 112–114
design optimization, 248–250
exception handling, 222

SoapException class, 222–225
WebService behavior, 238–240

.NET remoting vs. ASP.NET, 244–248
choosing between, 246–248
overview of features, 245–246

security and authentication, 240–244
setting Web references to, 220–222
summary of, 251
supported data types, 215–216
technology overview, 208–209

Web Services Description Language
(WSDL), 207, 208

generating a proxy class using,
211–215

WebMethodAttribute class, 210
WebService behavior, 231–232

exception handling, 238–240
implementing, 234–238
overview of, 231
using, 232, 233, 234–238

WebService class, 209, 211
WebServiceAttribute class, 210
WebServiceBindingAttribute class,

211
wildcard character (*), 117
Windows event log, 345–346
wrapper functions, 118–119
Write() method

Debug class, 322
Trace class, 337

WriteEntry() method, 28
WriteIf() method

Debug class, 322
Trace class, 337

WriteLine() method
Debug class, 322
Trace class, 337

366

Index

0724Indx.qxd 2/27/03 12:17 PM Page 366

WriteLineIf() method
Debug class, 322
Trace class, 337, 340

WriteTrace() subroutine, 339
WriteXml() method, 98
WriteXmlSchema() method, 98
WS-Security specification, 240

X
XML (Extensible Markup Language), 22

ADO.NET integration with, 63, 64,
67–68, 88, 96–106

ASP.NET configuration files and, 49

DataSet integration with, 88, 96–106
generating from a DataSet, 98–106
serialization, 88
Web Services Description Language,

207
XML data document, 64
XML-MSDATA namespace, 208
XmlReader object, 66, 80
XmlValidatingReader class, 103–104
XPATH queries, 98, 101
XSD (Extensible Schema Definition), 68,

88
DataSet validation using, 101–104
Web service supported data types, 215

367

Index

0724Indx.qxd 2/27/03 12:17 PM Page 367

